

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NATIONAL MARINE FISHERIES SERVICE West Coast Region 1201 NE Lloyd Boulevard, Suite 1100 PORTLAND, OR 97232-1274

Refer to NMFS No: WCRO-2021-03150

August 15, 2023

Todd Tillinger Chief, Regulatory Branch U.S. Army Corps of Engineers, Seattle District 4735 East Marginal Way South, Bldg 1212 Seattle, Washington 98134-3755

Re: Endangered Species Act Section 7(a)(2) Biological Opinion, and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Response for Dee Pile and Decking Repair Project in Lake Union, Seattle, Washington (USACE No. NWS-2021-784; HUC: 171100120400 – Lake Union)

Dear Mr. Tillinger:

Thank you for your letter of December 9, 2021, requesting initiation of consultation with NOAA's National Marine Fisheries Service (NMFS) pursuant to section 7 of the Endangered Species Act of 1973 (ESA) (16 U.S.C. 1531 et seq.) for U.S Army Corps of Engineers (USACE) authorization of the Dee Pile and Decking Repair Project in Lake Union, Seattle, Washington. Thank you, also, for your request for consultation pursuant to the essential fish habitat (EFH) provisions in Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA)(16 U.S.C. 1855(b)) for this action.

The enclosed document contains the biological opinion (opinion) prepared by the NMFS pursuant to section 7 of the ESA on the effects of the proposed action. In this opinion, the NMFS concludes that the proposed action would adversely affect but is not likely to jeopardize the continued existence of Puget Sound (PS) Chinook salmon and PS steelhead. The NMFS also concludes that the proposed action is likely to adversely affect designated critical habitat for PS Chinook salmon but is not likely to result in the destruction or adverse modification of PS Chinook salmon designated critical habitat. This opinion also documents our conclusion that the proposed action is not likely to adversely affect southern resident (SR) killer whales and their designated critical habitat.

This opinion includes an incidental take statement (ITS) that describes reasonable and prudent measures (RPMs) the NMFS considers necessary or appropriate to minimize the incidental take associated with this action, and sets forth nondiscretionary terms and conditions that the USACE must comply with to meet those measures. Incidental take from actions that meet these terms and conditions will be exempt from the ESA's prohibition against the take of listed species.

Section 3 of this document includes our analysis of the action's likely effects on EFH pursuant to Section 305(b) of the MSA. Based on that analysis, the NMFS concluded that the action would adversely affect designated freshwater EFH for Pacific Coast Salmon. Therefore, we have provided one conservation recommendation that can be taken by the USACE to avoid, minimize, or otherwise offset potential adverse effects on EFH. We also concluded that the action would not adversely affect EFH for Pacific Coast groundfish and coastal pelagic species. Therefore, consultation under the MSA is not required for EFH for those EFHs.

Section 305(b) (4) (B) of the MSA requires Federal agencies to provide a detailed written response to the NMFS within 30 days after receiving this recommendation. If the response is inconsistent with the EFH conservation recommendations, the USACE must explain why the recommendations will not be followed, including the scientific justification for any disagreements over the effects of the action and recommendations. In response to increased oversight of overall EFH program effectiveness by the Office of Management and Budget, the NMFS established a quarterly reporting requirement to determine how many conservation recommendations are provided as part of each EFH consultation and how many are adopted by the action agency. Therefore, we request that in your statutory reply to the EFH portion of this consultation you clearly identify the number of conservation recommendations accepted.

Please contact Thomas Kennedy in the North Puget Sound Branch of the Oregon/Washington Coastal Office at (804) 543-5662, or by electronic mail at Thomas.Kennedy@noaa.gov if you have any questions concerning this consultation, or if you require additional information.

Sincerely,

Kim W. Kratz, Ph.D

Assistant Regional Administrator Oregon Washington Coastal Office

cc: Ryan Cochoit, USACE

Endangered Species Act (ESA) Section 7(a)(2) Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Response for the

Dee Pier Pile and Decking Project in Lake Union, King County, Washington (USACE Numbers: NWS-2021-784; HUC: 171100120400-Lake Union)

NMFS Consultation Number: WCR-2021-03150

Action Agency: U.S. Army Corps of Engineers

Affected Species and Determinations:

ESA-Listed Species	Status	Is Action Likely to Adversely Affect Species?	Is Action Likely To Jeopardize the Species?	Is Action Likely to Adversely Affect Critical Habitat?	Is Action Likely To Destroy or Adversely Modify Critical Habitat?
Chinook salmon (Oncorhynchus tshawytscha) Puget Sound (PS)	Threatened	Yes	No	Yes	No
Steelhead (O. mykiss) PS	Threatened	Yes	No	N/A	N/A
Killer whales (Orcinus orca) Southern resident (SR)	Endangered	No	No	No	No

N/A = not applicable. The action area is outside designated critical habitat, or critical habitat has not been designated.

Affected Essential Fish Habitat (EFH) and NMFS' Determinations:

Fishery Management Plan That Describes EFH in the Project Area	Does Action Have an Adverse Effect on EFH?	Are EFH Conservation Recommendations Provided?
Pacific Coast Salmon	Yes	Yes
Pacific Coast Groundfish	No	No
Coastal Pelagic Species	No	No

Consultation Conducted By:	National Marine Fisheries Service
	West Coast Region

Issued By:

Assistant Regional Administrator Oregon Washington Coastal Office

Date: August 15, 2023

TABLE OF CONTENTS

1.	Intro	ductionduction	1
	1.1 B	ackground	1
	1.2 C	Consultation History	1
	1.3 P	roposed Federal Action	2
2.	Enda	ngered Species Act: Biological Opinion And Incidental Take Statement	4
	2.1 A	analytical Approach	5
	2.2 R	Lange-wide Status of the Species and Critical Habitat	6
		action Area	
	2.4 E	Invironmental Baseline	17
	2.5 E	Effects of the Action	25
	2.5.1	Effects on Listed Species	26
	2.5.2	Effects on Critical Habitat	36
	2.6 C	Cumulative Effects	37
	2.7 In	ntegration and Synthesis	38
	2.7.1	ESA-listed Species	39
	2.7.2	<u></u>	
		Conclusion	
	2.9 II	ncidental Take Statement	
	2.9.1		
	2.9.2		
	2.9.3		
	2.9.4		
		Conservation Recommendations	
		Reinitiation of Consultation	
	2.12 "	Not Likely to Adversely Affect" Determinations	
	2.12.		
	2.12.		
3.	_	nuson-Stevens Fishery Conservation and Management Act Essential Fish I	
Re			
		Ssential Fish Habitat Affected By the Project	
		Adverse Effects on Essential Fish Habitat	
		Sesential Fish Habitat Conservation Recommendations	
		tatutory Response Requirement	
		upplemental Consultation	
4.	Data	Quality Act Documentation and Pre-Dissemination Review	51
5	Refe	rences	53

LIST OF ABBREVIATIONS

BE – Biological Evaluation

BMP – Best Management Practices

CFR – Code of Federal Regulations

USACE – Corps of Engineers, U.S. Army

dB – Decibel (common unit of measure for sound intensity)

DIP – Demographically Independent Population

DPS – Distinct Population Segment

DOA - Data Quality Act

EFH – Essential Fish Habitat

ESA – Endangered Species Act

ESU – Evolutionarily Significant Unit

FR – Federal Register

HAPC - Habitat Area of Particular Concern

HPA – Hydraulic Project Approval

HPAH – High Molecular Weight Polycyclic Aromatic Hydrocarbons

HUC – Hydrologic Unit Code

ITS – Incidental Take Statement

JARPA – Joint Aquatic Resource Permit Application

mg/L – Milligrams per Liter

LPAH – Low Molecular Weight Polycyclic Aromatic Hydrocarbons

MPG – Major Population Group

MSA – Magnuson-Stevens Fishery Conservation and Management Act

NMFS – National Marine Fisheries Service

NOAA – National Oceanic and Atmospheric Administration

PAH – Polycyclic Aromatic Hydrocarbons

PBF – Physical or Biological Feature

PCE – Primary Constituent Element

PFMC - Pacific Fishery Management Council

PS - Puget Sound

PSTRT - Puget Sound Technical Recovery Team

PSSTRT - Puget Sound Steelhead Technical Recovery Team

RPM – Reasonable and Prudent Measure

SAV – Submerged Aquatic Vegetation

SEL – Sound Exposure Level

SL – Source Level

SR – Southern Resident (Killer Whales)

VSP – Viable Salmonid Population

WCR – West Coast Region (NMFS)

WDFW - Washington State Department of Fish and Wildlife

WDOE – Washington State Department of Ecology

1. INTRODUCTION

This Introduction section provides information relevant to the other sections of this document and is incorporated by reference into Sections 2 and 3, below.

1.1 Background

The National Marine Fisheries Service (NMFS) prepared the biological opinion (opinion) and incidental take statement (ITS) portions of this document in accordance with section 7(b) of the Endangered Species Act (ESA) of 1973 (16 U.S.C. 1531 et seq.), as amended, and implementing regulations at 50 CFR part 402.

We also completed an essential fish habitat (EFH) consultation on the proposed action, in accordance with section 305(b)(2) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) (16 U.S.C. 1801 et seq.) and implementing regulations at 50 CFR part 600.

On July 5, 2022, the U.S. District Court for the Northern District of California issued an order vacating the 2019 regulations that were revised or added to 50 CFR part 402 in 2019 ("2019 Regulations," see 84 FR 44976, August 27, 2019) without making a finding on the merits. On September 21, 2022, the U.S. Court of Appeals for the Ninth Circuit granted a temporary stay of the district court's July 5 order. On November 14, 2022, the Northern District of California issued an order granting the government's request for voluntary remand without vacating the 2019 regulations. The District Court issued a slightly amended order two days later on November 16, 2022. As a result, the 2019 regulations remain in effect, and we are applying the 2019 regulations here. For purposes of this consultation and in an abundance of caution, we considered whether the substantive analysis and conclusions articulated in the biological opinion and incidental take statement would be any different under the pre-2019 regulations. We have determined that our analysis and conclusions would not be any different.

We completed pre-dissemination review of this document using standards for utility, integrity, and objectivity in compliance with applicable guidelines issued under the Data Quality Act (DQA) (section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001, Public Law 106-554). The document will be available at the NOAA Library Institutional Repository [https://repository.library.noaa.gov/welcome]. A complete record of this consultation is on file at the Oregon Washington Coastal Office.

1.2 Consultation History

On December 9, 7, 2021, the NMFS received the USACE's request for informal consultation (USACE 2021) along with a biological evaluation (BE, Rohaly 2021a), Joint Aquatic Resources Permit Application (JARPA) form (Rohaly 2021b), and project plan drawings (Rohaly 2021c). On June 22, 2022, the NMFS emailed a request for additional information to the USACE regarding the length of the work window, use of galvanized steel, and the use of treated wood in the project. That information was provided on July 12, 2022. On July 14, 2022, the NMFS received the USACE's updated request for formal consultation (USACE 2022a). On November

23, 2022, the NMFS received the USACE's request to pause consultation due to a potential change in the scope of work (USACE 2022b). On March 13, 2023, the NMFS received the USACE's notification of no changes to the scope of work (USACE 2023). On April 12, 2023, the NMFS emailed a request for a copy of the Hydraulic Project Approval (HPA), which was provided by the USACE on June 20, 2023 (WDFW 2023a). Formal consultation was initiated on May 19, 2023.

This opinion is based on the information identified above; recovery plans, status reviews, and critical habitat designations for ESA-listed PS Chinook salmon and PS steelhead; published and unpublished scientific information on the biology and ecology of those species; and relevant scientific and gray literature (see Literature Cited).

1.3 Proposed Federal Action

Under the ESA, "Action" means all activities or programs of any kind authorized, funded, or carried out, in whole or in part, by Federal agencies (50 CFR 402.02). Under the MSA, Federal action means any action authorized, funded, or undertaken, or proposed to be authorized, funded, or undertaken by a Federal Agency (50 CFR 600.910).

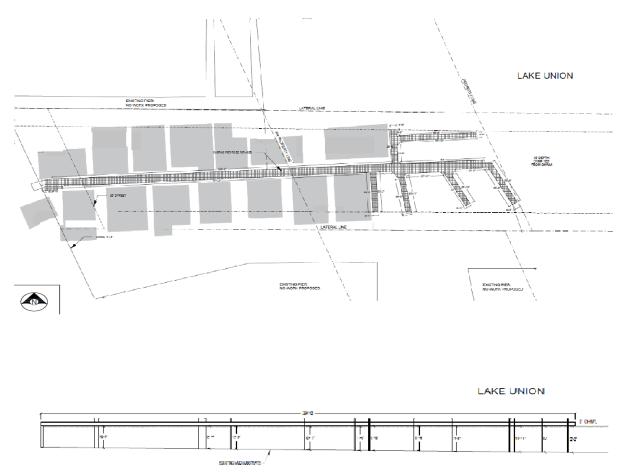

The USACE proposes to authorize the repair and maintenance of an existing 3,204-square foot residential pier located in Lake Union at 2420 Westlake Avenue North, Seattle, King County, WA. 98109 (47.64045 N latitude, -122.34132 longitude). The pier has space for up to fourteen house boats to moor, in addition to recreational vessel traffic. (Figure 1).

Figure 1. Google Earth photographs of the project site. The left image shows the project site relative to the City of Seattle and Lake Union. The right image shows the pier and houseboats.

The applicant proposes to repair fourteen timber piles via bonnet splicing and to replace the existing decking with a grated decking material that has a 43% open area. Piles to be bonneted

will be cut off near the mudline with underwater saws. The BA reports that any excavation around the base of the piles to facilitate cutting would be limited to hand digging. Based on numerous consultations that included this type of work, divers would most likely use a hand-held induction dredge or similar small hydraulic suction device to temporarily remove bottom sediments from around the base of the piles, then again to return the sediments around the repair. All steel used will be epoxy-coated steel. Deck hardware will be replaced as needed, including deteriorated lag bolts, loose flotation tubs and Styrofoam pile hoops, and utility boxes. A barge mounted crane will be brought in to lift heavy elements into place. Other work will be done by workers using hand tools.

Figure 2. Overhead and elevation views of the pier (Adapted from Rohaly 2021).

No site preparation is needed, as repairs can be made while floating homes are docked. The existing structure will maintain the same overwater footprint. The work area will be accessed from land via the marina parking lot, and from water via normal vessel routes. Removed piles and decking debris will be placed on the barge, which will be fitted with filtration material to prevent sediments from washing back into the lake. Barges would fix position using spuds and would not anchor or otherwise impact native aquatic vegetation at any time. Pile bonnets will also be placed on the barge prior to installation. The lake bottom may be disturbed during pile repair, but no excavation or dredging would occur. The work area will be surrounded by a floating boom to prevent floating debris from leaving the work site. Floating debris will be

cleared from inside the boom and any dropped material will be retrieved before the boom is removed. No pile driving will occur during the work. No additional boat slips are proposed; thus, no increase in recreational boat traffic is anticipated.

In-water work will occur October 1 and April 15, with work expected to take around 60 days to complete. Additionally, all work would be done in compliance with the best management practices (BMPs) and conservation measures identified in the applicant's BE and JARPA.

The NMFS also considered whether or not the proposed action would cause any other activities. We determined that the action would extend the useful life of the pier with a combined total of 6 mooring slips. Therefore, the action would perpetuate the continued mooring and operation of about 15 floating homes and 10 recreational vessels for decades to come. Consequently, we have included an analysis of the effects of moorage and vessel traffic at the piers in the effects section of this Opinion.

2. ENDANGERED SPECIES ACT: BIOLOGICAL OPINION AND INCIDENTAL TAKE STATEMENT

The ESA establishes a national program for conserving threatened and endangered species of fish, wildlife, plants, and the habitat upon which they depend. As required by section 7(a)(2) of the ESA, each Federal agency must ensure that its actions are not likely to jeopardize the continued existence of endangered or threatened species, or adversely modify or destroy their designated critical habitat. Per the requirements of the ESA, Federal action agencies consult with the NMFS, and section 7(b)(3) requires that, at the conclusion of consultation, the NMFS provide an opinion stating how the agency's actions would affect listed species and their critical habitats. If incidental take is reasonably certain to occur, section 7(b)(4) requires the NMFS to provide an ITS that specifies the impact of any incidental taking and includes reasonable and prudent measures (RPMs) and terms and conditions to minimize such impacts.

The USACE determined that the proposed action is not likely to adversely affect PS Chinook salmon, PS steelhead, and designated critical habitat for PS Chinook salmon. They further determined that the proposed action would have no effect on any other species and critical habitats under NMFS jurisdiction. Because the NMFS has concluded that the proposed action is likely to adversely affect PS Chinook salmon, PS steelhead, and designated critical habitat for PS Chinook salmon, the NMFS has proceeded with formal consultation. Additionally, because of the trophic relationship between PS Chinook salmon and SR killer whales, the NMFS analyzed the action's potential effects on SR killer whales and their designated critical habitat in the "Not Likely to Adversely Affect" Determinations section 2.12 (Table 1).

Table 1. ESA-listed species and critical habitat that may be affected by the proposed action.

ESA-listed species and critical habitat likely to be adversely affected (LAA)				
Species	Status	Species	Critical Habitat	Listed / CH Designated
Chinook salmon (Oncorhynchus	Threatened	LAA	LAA	06/28/05 (70 FR 37160) /
tshawytscha) Puget Sound				09/02/05 (70 FR 52630)
steelhead (O. mykiss)	Threatened	LAA	N/A	05/11/07 (72 FR 26722)/
Puget Sound				02/24/16 (81 FR 9252)
ESA-listed species and critical habitat not likely to be adversely affected (NLAA)				
Species	Status	Species	Critical Habitat	Listed / CH Designated
Killer whales (Orcinus orca)	Endangered	NLAA	NLAA	11/18/05 (70 FR 57565)/
Southern resident (SR)				11/29/06 (71 FR 69054)

LAA = likely to adversely affect

NLAA = not likely to adversely affect

N/A = not applicable.

2.1 Analytical Approach

This biological opinion includes both a jeopardy analysis and an adverse modification analysis. The jeopardy analysis relies upon the regulatory definition of "jeopardize the continued existence of" a listed species, which is "to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species" (50 CFR 402.02). Therefore, the jeopardy analysis considers both survival and recovery of the species.

This biological opinion also relies on the regulatory definition of "destruction or adverse modification," which "means a direct or indirect alteration that appreciably diminishes the value of critical habitat as a whole for the conservation of a listed species" (50 CFR 402.02).

The designation of critical habitat for PS Chinook salmon uses the terms primary constituent element (PCE) or essential feature. The 2016 final rule (81 FR 7414; February 11, 2016) that revised the critical habitat regulations (50 CFR 424.12) replaced this term with physical or biological features (PBFs). The shift in terminology does not change the approach used in conducting a "destruction or adverse modification" analysis, which is the same regardless of whether the original designation identified PCEs, PBFs, or essential features. In this biological opinion, we use the term PBF to mean PCE or essential feature, as appropriate for the specific critical habitat.

The ESA Section 7 implementing regulations define effects of the action using the term "consequences" (50 CFR 402.02). As explained in the preamble to the final rule revising the definition and adding this term (84 FR 44976, 44977; August 27, 2019), that revision does not change the scope of our analysis, and in this opinion, we use the terms "effects" and "consequences" interchangeably.

We use the following approach to determine whether a proposed action is likely to jeopardize listed species or destroy or adversely modify critical habitat:

- Evaluate the range-wide status of the species and critical habitat expected to be adversely affected by the proposed action.
- Evaluate the environmental baseline of the species and critical habitat.
- Evaluate the effects of the proposed action on species and their critical habitat using an exposure—response approach.
- Evaluate cumulative effects.
- In the integration and synthesis, add the effects of the action and cumulative effects to the environmental baseline, and, in light of the status of the species and critical habitat, analyze whether the proposed action is likely to: (1) directly or indirectly reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of that species; or (2) directly or indirectly result in an alteration that appreciably diminishes the value of critical habitat as a whole for the conservation of a listed species.
- If necessary, suggest a reasonable and prudent alternative to the proposed action.

2.2 Range-wide Status of the Species and Critical Habitat

This opinion examines the status of each species that would be adversely affected by the proposed action. The status is determined by the level of extinction risk that the listed species face, based on parameters considered in documents such as recovery plans, status reviews, and listing decisions. This informs the description of the species' likelihood of both survival and recovery. The species status section also helps to inform the description of the species' "reproduction, numbers, or distribution" for the jeopardy analysis. The opinion also examines the condition of critical habitat throughout the designated area, evaluates the conservation value of the various watersheds and coastal and marine environments that make up the designated area, and discusses the function of the PBFs that are essential for the conservation of the species.

The summaries that follow describe the status of the ESA-listed species, and their designated critical habitats, that occur within the action area and are considered in this opinion. More detailed information on the biology, habitat, and conservation status and trend of these listed resources can be found in the listing regulations and critical habitat designations published in the Federal Register and in the recovery plans and other sources at:

https://www.fisheries.noaa.gov/species-directory/threatened-endangered, and are incorporated here by reference.

Listed Species

<u>Viable Salmonid Population (VSP) Criteria:</u> For Pacific salmonids, we commonly use four VSP criteria (McElhany et al. 2000) to assess the viability of the populations that constitute the species. These four criteria (spatial structure, diversity, abundance, and productivity) encompass the species' "reproduction, numbers, or distribution" as described in 50 CFR 402.02. When these parameters are collectively at appropriate levels, they maintain a population's capacity to adapt to various environmental conditions and allow it to sustain itself in the natural environment.

"Spatial structure" refers both to the spatial distributions of individuals in the population and the processes that generate that distribution. A population's spatial structure depends on habitat

quality and spatial configuration, and the dynamics and dispersal characteristics of individuals in the population.

"Diversity" refers to the distribution of traits within and among populations. These range in scale from DNA sequence variation in single genes to complex life history traits.

"Abundance" generally refers to the number of naturally-produced adults that return to their natal spawning grounds.

"Productivity" refers to the number of naturally-spawning adults produced per parent. When progeny replace or exceed the number of parents, a population is stable or increasing. When progeny fail to replace the number of parents, the population is in decline.

For species with multiple populations, we assess the status of the entire species based on the biological status of the constituent populations, using criteria for groups of populations, as described in recovery plans and guidance documents from technical recovery teams. Considerations for species viability include having multiple populations that are viable, ensuring that populations with unique life histories and phenotypes are viable, and that some viable populations are both widespread to avoid concurrent extinctions from mass catastrophes and spatially close to allow functioning as metapopulations (McElhany et al. 2000).

The summaries that follow describe the status of the ESA-listed species, and their designated critical habitats, that occur within the geographic area of this proposed action and are considered in this opinion. More detailed information on the status and trends of these listed resources, and their biology and ecology, are in the listing regulations and critical habitat designations published in the Federal Register.

Puget Sound (PS) Chinook Salmon

The PS Chinook salmon evolutionarily significant unit (ESU) was listed as threatened on June 28, 2005 (70 FR 37160). We adopted the recovery plan for this ESU in January 2007. The recovery plan consists of two documents: the Puget Sound salmon recovery plan (SSPS 2007) and the final supplement to the Shared Strategy's Puget Sound salmon recovery plan (NMFS 2006). The recovery plan adopts ESU and population level viability criteria recommended by the Puget Sound Technical Recovery Team (PSTRT) (Ruckelshaus et al. 2002). The PSTRT's biological recovery criteria will be met when all of the following conditions are achieved:

- The viability status of all populations in the ESU is improved from current conditions, and when considered in the aggregate, persistence of the ESU is assured;
- Two to four Chinook salmon populations in each of the five biogeographical regions of the ESU achieve viability, depending on the historical biological characteristics and acceptable risk levels for populations within each region;
- At least one population from each major genetic and life history group historically present within each of the five biogeographical regions is viable;
- Tributaries to Puget Sound not identified as primary freshwater habitat for any of the 22 identified populations are functioning in a manner that is sufficient to support an ESU-wide

- recovery scenario; Production of Chinook salmon from tributaries to Puget Sound not identified as primary freshwater habitat for any of the 22 identified populations occurs in a manner consistent with ESU recovery; and
- Populations that do not meet all the Viable Salmon Population (VSP) parameters are sustained to provide ecological functions and preserve options for ESU recovery.

General Life History: Chinook salmon are anadromous fish that require well-oxygenated water that is typically less than 63° F (17° C), but some tolerance to higher temperatures is documented with acclimation. Adult Chinook salmon spawn in freshwater streams, depositing fertilized eggs in gravel "nests" called redds. The eggs incubate for three to five months before juveniles hatch and emerge from the gravel. Juveniles spend from three months to two years in freshwater before migrating to the ocean to feed and mature. Chinook salmon spend from one to six years in the ocean before returning to their natal freshwater streams where they spawn and then die. Chinook salmon are divided into two races, stream-types and ocean-types, based on the major juvenile development strategies. Stream-type Chinook salmon tend to rear in freshwater for a year or more before entering marine waters. Conversely, ocean-type juveniles tend to leave their natal streams early during their first year of life, and rear in estuarine waters as they transition into their marine life stage. Both stream- and ocean-type Chinook salmon are present, but ocean-type Chinook salmon predominate in Puget Sound populations.

Chinook salmon are further grouped into "runs" that are based on the timing of adults that return to freshwater. Early- or spring-run chinook salmon tend to enter freshwater as immature fish, migrate far upriver, and finally spawn in the late summer and early autumn. Late- or fall-run Chinook salmon enter freshwater at an advanced stage of maturity, move rapidly to their spawning areas, and spawn within a few days or weeks. Summer-run fish show intermediate characteristics of spring and fall runs, without the extensive delay in maturation exhibited by spring-run Chinook salmon. In Puget Sound, spring-run Chinook salmon tend to enter their natal rivers as early as March, but do not spawn until mid-August through September. Returning summer- and fall-run fish tend to enter the rivers early-June through early-September, with spawning occurring between early August and late-October.

Yearling stream-type fish tend to leave their natal rivers late winter through spring, and move relatively directly to nearshore marine areas and pocket estuaries. Out-migrating ocean-type fry tend to migrate out of their natal streams beginning in early-March. Those fish rear in the tidal delta estuaries of their natal stream for about two weeks to two months before migrating to marine nearshore areas and pocket estuaries in late May to June. Out-migrating young of the year parr tend to move relatively directly into nearshore marine areas and pocket estuaries after leaving their natal streams between late spring and the end of summer.

Spatial Structure and Diversity: The PS Sound Chinook salmon ESU includes all naturally spawning populations of Chinook salmon from rivers and streams flowing into Puget Sound including the Straits of Juan De Fuca from the Elwha River, eastward, including rivers and streams flowing into Hood Canal, South Sound, North Sound and the Strait of Georgia in Washington. The ESU also includes the progeny of numerous artificial propagation programs (NWFSC 2015). The PSTRT identified 22 extant populations, grouped into five major geographic regions, based on consideration of historical distribution, geographic isolation,

dispersal rates, genetic data, life history information, population dynamics, and environmental and ecological diversity. The PSTRT distributed the 22 populations among five major biogeographical regions, or major population groups (MPGs), that are based on similarities in hydrographic, biogeographic, and geologic characteristics (Table 2).

Table 2. Extant PS Chinook salmon populations in each biogeographic region (Ruckelshaus et al. 2002, NWFSC 2015).

Biogeographic Region	Population (Watershed)	
Studit of Cooncid	North Fork Nooksack River	
Strait of Georgia	South Fork Nooksack River	
Strait of Juan de Fuca	Elwha River	
Strait of Juan de Fuca	Dungeness River	
Hood Canal	Skokomish River	
Hood Canai	Mid Hood Canal River	
	Skykomish River	
	Snoqualmie River	
	North Fork Stillaguamish River	
	South Fork Stillaguamish River	
Whidbey Basin	Upper Skagit River	
Windbey Basin	Lower Skagit River	
	Upper Sauk River	
	Lower Sauk River	
	Suiattle River	
	Upper Cascade River	
	Cedar River	
Central/South Puget Sound Basin	North Lake Washington/ Sammamish	
	River	
	Green/Duwamish River	
Sound Dasin	Puyallup River	
	White River	
	Nisqually River	

Hatchery-origin spawners are present in high fractions in most populations within the ESU, with the Whidbey Basin the only MPG with consistently high fractions of natural-origin spawners. Between 1990 and 2019, the fraction of natural-origin spawners has declined in many of the populations outside of the Skagit watershed, and the ESU overall remains at a "moderate" risk of extinction (Ford 2022).

Abundance and Productivity: Available data on total abundance since 1980 indicate that abundance trends have fluctuated between positive and negative for individual populations, but productivity remains low in most populations, and hatchery-origin spawners are present in high fractions in most populations outside of the Skagit watershed. Further, across the ESU, 10 of 22 MPGs show natural productivity below replacement in nearly all years since the mid-1980s, and the available data indicate that there has been a general decline in natural-origin spawner abundance across all MPGs over the most-recent fifteen years. Further, escapement levels for all populations remain well below the PSTRT planning ranges for recovery (Ford 2022). Based on

the current information on abundance, productivity, spatial structure and diversity, the most recent 5-year status review concluded that the PS Chinook salmon ESU remains at "moderate" risk of extinction, that viability is largely unchanged from the prior review, and that the ESU should remain listed as threatened (Ford 2022).

<u>Limiting Factors:</u> Factors limiting recovery for PS Chinook salmon include:

- Degraded floodplain and in-river channel structure
- Degraded estuarine conditions and loss of estuarine habitat
- Riparian area degradation and loss of in-river large woody debris
- Excessive fine-grained sediment in spawning gravel
- Degraded water quality and temperature
- Degraded nearshore conditions
- Impaired passage for migrating fish
- Severely altered flow regime

<u>PS Chinook Salmon within the Action Area:</u> The PS Chinook salmon that are likely to occur in the action area would be fall-run Chinook salmon from the Cedar River population and from the Sammamish River population (Ford 2022; WDFW 2023b). Both stream- and ocean-type Chinook salmon are present in these populations, with the majority being ocean-types.

The Cedar River population is relatively small, and is a native stock with mostly natural production. The total annual abundance has fluctuated between about 133 and 2,451 individuals since 1965, with an overall slightly negative long-term abundance trend. However, the 2022 status review reported that the proportion of natural-origin spawners has stayed between 60 and 90% since the early 2000s, and the 2015-2019 5-year mean fraction of natural-origin spawner abundance was 71%. In 2021, the total number of returning adults was about 963, 62% of which were natural-origin spawners (Ford 2022; WDFW 2023c).

The Sammamish River population is relatively small, and is a mixed stock population with a high proportion of mixed-origin hatchery fish. Total annual abundance has fluctuated between about 33 and 2,223 fish since 1983. The overall long-term abundance trend is slightly positive, but the 15-year trend in log natural-origin spawner abundance is negative, and the 2022 status review reported a decreasing fraction of natural-origin spawner abundance in the three most-recent five-year review periods. In 2021, the total number of returning adults was about 2,186, 9% of which were natural-origin spawners (Ford 2022; WDFW 2023c).

All returning adults and out-migrating juveniles of these two populations, as well as individuals that spawn in the numerous smaller streams across the basin, must pass through the action area to complete their life cycles. Adult Chinook salmon pass through Chittenden Locks (aka Ballard Locks) between mid-June through September, with peak migration occurring in mid-August (City of Seattle 2008). Spawning occurs well upstream of the action area between early August and late October. Juvenile Chinook salmon are found in Lake Washington and Lake Sammamish between January and July, primarily in the littoral zone (Tabor et al. 2006). Outmigration through the ship canal and past the action area to the locks occurs between late-May and early-July, with the peak in June (City of Seattle 2008).

Puget Sound (PS) steelhead

The PS steelhead distinct population segment (DPS) was listed as threatened on May 11, 2007 (72 FR 26722). The NMFS adopted the recovery plan for this DPS in December 2019. In 2013, the Puget Sound Steelhead Technical Recovery Team (PSSTRT) identified 32 demographically independent populations (DIPs) within the DPS, based on genetic, environmental, and life history characteristics. Those DIPs are distributed among three geographically-based major population groups (MPGs); Northern Cascades, Central and South Puget Sound; and Hood Canal and Strait de Fuca (Myers et al. 2015) (Table 3).

Table 3. PS steelhead Major Population Groups (MPGs), Demographically Independent Populations (DIPs), and DIP Viability Estimates (Modified from Figure 58 in Hard *et al.* 2015).

Geographic Region (MPG)	Demographically Independent Population (DIP)	Viability
Northern Cascades	Drayton Harbor Tributaries Winter Run	Moderate
	Nooksack River Winter Run	Moderate
	South Fork Nooksack River Summer Run	Moderate
	Samish River/Bellingham Bay Tributaries Winter Run	Moderate
	Skagit River Summer Run and Winter Run	Moderate
	Nookachamps Creek Winter Run	Moderate
	Baker River Summer Run and Winter Run	Moderate
	Sauk River Summer Run and Winter Run	Moderate
	Stillaguamish River Winter Run	Low
	Deer Creek Summer Run	Moderate
	Canyon Creek Summer Run	Moderate
	Snohomish/Skykomish Rivers Winter Run	Moderate
	Pilchuck River Winter Run	Low
	North Fork Skykomish River Summer Run	Moderate
	Snoqualmie River Winter Run	Moderate
	Tolt River Summer Run	Moderate
Central and South Puget Sound	Cedar River Summer Run and Winter Run	Low
	North Lake Washington and Lake Sammamish Winter Run	Moderate
	Green River Winter Run	Low
	Puyallup River Winter Run	Low
	White River Winter Run	Low
	Nisqually River Winter Run	Low
	South Sound Tributaries Winter Run	Moderate
	East Kitsap Peninsula Tributaries Winter Run	Moderate
Hood Canal and Strait de Fuca	East Hood Canal Winter Run	Low
	South Hood Canal Tributaries Winter Run	Low
	Skokomish River Winter Run	Low
	West Hood Canal Tributaries Winter Run	Moderate
	Sequim/Discovery Bay Tributaries Winter Run	Low
	Dungeness River Summer Run and Winter Run	Moderate
	Strait of Juan de Fuca Tributaries Winter Run	Low
	Elwha River Summer Run and Winter Run	Low

In 2015, the PSSTRT concluded that the DPS is at "very low" viability; with most of the 32 DIPs and all three MPGs at "low" viability based on widespread diminished abundance, productivity,

diversity, and spatial structure when compared with available historical evidence (Hard et al. 2015). Based on the PSSTRT viability criteria, the DPS would be considered viable when all three component MPG are considered viable. A given MPG would be considered viable when: 1) 40 percent or more of its component DIP are viable; 2) mean DIP viability within the MPG exceeds the threshold for viability; and 3) 40 percent or more of the historic life history strategies (i.e., summer runs and winter runs) within the MPG are viable. For a given DIP to be considered viable, its probability of persistence must exceed 85 percent, as calculated by Hard et al. (2015), based on abundance, productivity, diversity, and spatial structure within the DIP.

General Life History: PS steelhead exhibit two major life history strategies. Ocean-maturing, or winter-run fish typically enter freshwater from November to April at an advanced stage of maturation, and then spawn from February through June. Stream-maturing, or summer-run fish typically enter freshwater from May to October at an early stage of maturation, migrate to headwater areas, and hold for several months prior to spawning in the following spring. After hatching, juveniles rear in freshwater from one to three years prior to migrating to marine habitats (two years is typical). Smoltification and seaward migration typically occurs from April to mid-May. Smolt lengths vary between watersheds, but typically range from 4.3 to 9.2 inches (109 to 235 mm) (Myers et al. 2015). Juvenile steelhead are generally independent of shallow nearshore areas soon after entering marine water (Bax et al. 1978, Brennan et al. 2004, Schreiner et al. 1977), and are not commonly caught in beach seine surveys. Recent acoustic tagging studies (Moore et al. 2010) have shown that smolts migrate from rivers to the Strait of Juan de Fuca from one to three weeks. PS steelhead feed in the ocean waters for one to three years (two years is again typical), before returning to their natal streams to spawn. Unlike Chinook salmon, most female steelhead, and some males, return to marine waters following spawning (Myers et al. 2015).

Spatial Structure and Diversity: The PS steelhead DPS includes all naturally spawned anadromous steelhead populations in streams in the river basins of the Strait of Juan de Fuca, Puget Sound, and Hood Canal, Washington, bounded to the west by the Elwha River (inclusive) and to the north by the Nooksack River and Dakota Creek (inclusive). The DPS also includes six hatchery stocks that are considered no more than moderately diverged from their associated natural-origin counterparts (USDC 2014). PS steelhead are the anadromous form of *O. mykiss* that occur below natural barriers to migration in northwestern Washington State (Ford 2022). Non-anadromous "resident" *O. mykiss* (a.k.a. rainbow trout) occur within the range of PS steelhead but are not part of the DPS due to marked differences in physical, physiological, ecological, and behavioral characteristics (Hard et al. 2015). As stated above, the DPS consists of 32 DIP that are distributed among three geographically-based MPG. An individual DIP may consist of winter-run only, summer-run only, or a combination of both life history types. Winter-run is the predominant life history type in the DPS (Hard et al. 2015).

Abundance and Productivity: Available data on total abundance since the late 1970s and early 1980s indicate that abundance trends have fluctuated between positive and negative for individual DIPs. The long-term abundance of adult steelhead returning to many rivers in Puget Sound has fallen substantially since estimates began for many populations in the late 1970s and early 1980s. Despite relative improvements in abundance and productivity for some DIPs between 2015 and 2019, particularly in the Central and South Puget Sound MPG, low

productivity persists throughout the 32 DIPs, with most showing long term downward trends (Ford 2022). Since the mid-1980s, trends in natural spawning abundance have also been temporally variable for most DIPs but remain predominantly negative, well below replacement for most DIPs, and most DIPs remain small (Ford 2022). Over the time series examined, the over-all abundance trends, especially for natural spawners, remain predominantly negative or flat across the DPS, and general steelhead abundance across the DPS remains well below the level needed to sustain natural production into the future (Ford 2022). The PSSTRT concluded that the PS steelhead DPS is currently not viable (Hard et al. 2015). The most recent 5-year status review reported an increasing viability trend for the Puget Sound steelhead DPS, but also reported that the extinction risk remains moderate for the DPS, and that the DPS should remain listed as threatened (Ford 2022).

<u>Limiting Factors:</u> Factors limiting recovery for PS steelhead include:

- The continued destruction and modification of steelhead habitat
- Widespread declines in adult abundance (total run size), despite significant reductions in harvest in recent years
- Threats to diversity posed by use of two hatchery steelhead stocks (Chambers Creek and Skamania)
- Declining diversity in the DPS, including the uncertain but weak status of summer run fish
- A reduction in spatial structure
- Reduced habitat quality through changes in river hydrology, temperature profile, downstream gravel recruitment, and reduced movement of large woody debris
- In the lower reaches of many rivers and their tributaries in Puget Sound where urban development has occurred, increased flood frequency and peak flows during storms and reduced groundwater-driven summer flows, with resultant gravel scour, bank erosion, and sediment deposition
- Dikes, hardening of banks with riprap, and channelization, which have reduced river braiding and sinuosity, increasing the likelihood of gravel scour and dislocation of rearing juveniles

PS Steelhead within the Action Area: The PS steelhead populations that occur in the action area consist of winter-runs from the Cedar River and North Lake Washington / Lake Sammamish DIPs (Ford 2022; WDFW 2023a). Both DIPs are among the smallest within the DPS. The Cedar River PS steelhead DIP is small, of unknown stock, and with natural production. The total annual abundance has fluctuated between 0 and about 900 individuals between 1984 and 2021, with a strong negative trend, such that no more than 10 retuning adults are believed to have retuned annually since 2007. The estimated total number of returning adults in 2021 was only 4 fish (Ford 2022; WDFW 2023d).

The North Lake Washington / Lake Sammamish DIP is extremely small, and of unknown stock origin. The total annual abundance has fluctuated between 0 and about 916 individuals between 1984 and 1999, with a steep negative trend until 1994, after which it flattened no more than 10 retuning adults. Abundance was only 4 adults during the last survey, which was done in 1999 (Ford 2022; WDFW 2023d)."

All returning adults and out-migrating juveniles of these two populations must pass the action area to complete their life cycles. Adult steelhead pass through Chittenden Locks (aka Ballard Locks) and the Lake Washington Ship Canal between January and May, and may remain within Lake Washington through June (City of Seattle 2008). The timing of steelhead spawning in the basin is uncertain, but occurs well upstream of the action area. Juvenile steelhead enter Lake Washington in April, and typically migrate through the ship canal and past the action area to the locks between April and May (City of Seattle 2008).

Critical Habitat

This section describes the status of designated critical habitat that would be affected by the proposed action by examining the condition and trends of physical or biological features (PBFs) that are essential to the conservation of the listed species throughout the designated areas. The PBFs are essential because they support one or more of the species' life stages (e.g., sites with conditions that support spawning, rearing, migration and foraging).

The project site and surrounding area has been designated as critical habitat for PS Chinook salmon.

The NMFS designated critical habitat for PS Chinook salmon on September 2, 2005 (70 FR 52630). That critical habitat is located in 16 freshwater subbasins and watersheds between the Dungeness/Elwha Watershed and the Nooksack Subbasin, inclusively, as well as in nearshore marine waters of the Puget Sound that are south of the US-Canada border and east of the Elwha River, and out to a depth of 30 meters. Although offshore marine is an area type identified in the final rule, it was not designated as critical habitat for PS Chinook salmon.

The PBFs of salmonid critical habitat include: (1) Freshwater spawning sites with water quantity and quality conditions and substrate supporting spawning, incubation and larval development; (2) Freshwater rearing sites with: (i) Water quantity and floodplain connectivity to form and maintain physical habitat conditions and support juvenile growth and mobility; (ii) Water quality and forage supporting juvenile development; and (iii) Natural cover such as shade, submerged and overhanging large wood, log jams and beaver dams, aquatic vegetation, large rocks and boulders, side channels, and undercut banks; (3) Freshwater migration corridors free of obstruction and excessive predation with water quantity and quality conditions and natural cover such as submerged and overhanging large wood, aquatic vegetation, large rocks and boulders, side channels, and undercut banks supporting juvenile and adult mobility and survival; (4) Estuarine areas free of obstruction and excessive predation with: (i) Water quality, water quantity, and salinity conditions supporting juvenile and adult physiological transitions between fresh- and saltwater; (ii) Natural cover such as submerged and overhanging large wood, aquatic vegetation, large rocks and boulders, side channels; and (iii) Juvenile and adult forage, including aquatic invertebrates and fishes, supporting growth and maturation; (5) Nearshore marine areas free of obstruction and excessive predation with: (i) Water quality and quantity conditions and forage, including aquatic invertebrates and fishes, supporting growth and maturation; and (ii) Natural cover such as submerged and overhanging large wood, aquatic vegetation, large rocks and boulders, and side channels; and (6) Offshore marine areas with water quality conditions and forage, including aquatic invertebrates and fishes, supporting growth and maturation. The PBF for PS Chinook salmon CH are listed in Table 4.

Table 4. Physical or biological features (PBFs) of designated critical habitat for PS Chinook salmon, and corresponding life history events. Although offshore marine areas were identified in the final rule, none were designated as critical habitat.

]	Physical or Biological Features	
Site Type	Site Attribute	Life History Event
Freshwater spawning	Water quantity Water quality Substrate	Adult spawning Embryo incubation Alevin growth and development
Freshwater rearing	Water quantity and Floodplain connectivity Water quality and Forage Natural cover	Fry emergence from gravel Fry/parr/smolt growth and development
Freshwater migration	(Free of obstruction and excessive predation) Water quantity and quality Natural cover	Adult sexual maturation Adult upstream migration and holding Kelt (steelhead) seaward migration Fry/parr/smolt growth, development, and seaward migration
Estuarine	(Free of obstruction and excessive predation) Water quality, quantity, and salinity Natural cover Forage	Adult sexual maturation and "reverse smoltification" Adult upstream migration and holding Kelt (steelhead) seaward migration Fry/parr/smolt growth, development, and seaward migration
Nearshore marine	(Free of obstruction and excessive predation) Water quality, quantity, and forage Natural cover	Adult growth and sexual maturation Adult spawning migration Nearshore juvenile rearing
Offshore marine	Water quality and forage	Adult growth and sexual maturation Adult spawning migration Subadult rearing

Major tributary river basins in the Puget Sound basin include the Nooksack, Samish, Skagit, Sauk, Stillaguamish, Snohomish, Lake Washington, Cedar, Sammamish, Green, Duwamish, Puyallup, White, Carbon, Nisqually, Deschutes, Skokomish, Duckabush, Dosewallips, Big Quilcene, Elwha, and Dungeness rivers and Soos Creek. Critical habitat throughout the Puget Sound basin has been degraded by numerous activities, including hydropower development, loss of mature riparian forests, increased sediment inputs, removal of large wood from the waterways, intense urbanization, agriculture, alteration of floodplain and stream morphology (i.e., channel modifications and diking), riparian vegetation disturbance, wetland draining and conversion, dredging, armoring of shorelines, marina and port development, road and railroad construction and maintenance, logging, and mining. Changes in habitat quantity, availability, and diversity, and flow, temperature, sediment load and channel instability are common limiting factors of critical habitat throughout the basin.

Land use practices have likely accelerated the frequency of landslides delivering sediment to streams. Fine sediment from unpaved roads also contributes to stream sedimentation. Unpaved roads are widespread on forested lands in the Puget Sound basin, and to a lesser extent, in rural residential areas. Historical logging removed most of the riparian trees near stream channels. Subsequent agricultural and urban conversion permanently altered riparian vegetation in the river valleys, leaving either no trees, or a thin band of trees. The riparian zones along many agricultural areas are now dominated by alder, invasive canary grass and blackberries, and provide substantially reduced stream shade and large wood recruitment (SSPS 2007).

Diking, agriculture, revetments, railroads and roads in lower stream reaches have caused significant loss of secondary channels in major valley floodplains in this region. Confined main channels create high-energy peak flows that remove smaller substrate particles and large wood. The loss of side-channels, oxbow lakes, and backwater habitats has resulted in a significant loss of juvenile salmonid rearing and refuge habitat. When the water level of Lake Washington was lowered 9 feet in the 1910s, thousands of acres of wetlands along the shoreline of Lake Washington, Lake Sammamish and the Sammamish River corridor were drained and converted to agricultural and urban uses. Wetlands play an important role in hydrologic processes, as they store water which ameliorates high and low flows. The interchange of surface and groundwater in complex stream and wetland systems helps to moderate stream temperatures. Thousands of acres of lowland wetlands across the region have been drained and converted to agricultural and urban uses, and forest wetlands are estimated to have diminished by one-third in Washington State (FEMAT 1993; Spence et al. 1996; SSPS 2007).

Loss of riparian habitat, elevated water temperatures, elevated levels of nutrients, increased nitrogen and phosphorus, and higher levels of suspended sediment, presumably from urban and highway runoff, wastewater treatment, failing septic systems, and agriculture or livestock impacts, have been documented in many Puget Sound tributaries (SSPS 2007).

Peak stream flows have increased over time due to paving (roads and parking areas), reduced percolation through surface soils on residential and agricultural lands, simplified and extended drainage networks, loss of wetlands, and rain-on-snow events in higher elevation clear cuts (SSPS 2007). In urbanized Puget Sound, there is a strong association between land use and land cover attributes and rates of coho spawner mortality likely due to runoff containing contaminants emitted from motor vehicles (Feist et al. 2011; Tian et al. 2021).

Dams constructed for hydropower generation, irrigation, or flood control have substantially affected PS Chinook salmon populations in a number of river systems. The construction and operation of dams have blocked access to spawning and rearing habitat, changed flow patterns, resulted in elevated temperatures and stranding of juvenile migrants, and degraded downstream spawning and rearing habitat by reducing recruitment of spawning gravel and large wood to downstream areas (SSPS 2007). These actions tend to promote downstream channel incision and simplification (Kondolf 1997), limiting fish habitat. Water withdrawals reduce available fish habitat and alter sediment transport. Hydropower projects often change flow rates, stranding and killing fish, and reducing aquatic invertebrate (food source) productivity (Hunter 1992).

Juvenile mortality occurs in unscreened or inadequately screened diversions. Water diversion ditches resemble side channels in which juvenile salmonids normally find refuge. When diversion headgates are shut, access back to the main channel is cut off and the channel goes dry. Mortality can also occur with inadequately screened diversions from impingement on the screen, or mutilation in pumps where gaps or oversized screen openings allow juveniles to get into the system. Blockages by dams, water diversions, and shifts in flow regime due to hydroelectric development and flood control projects are major habitat problems in many Puget Sound tributary basins (SSPS 2007).

The nearshore marine habitat has been extensively altered and armored by industrial and residential development near the mouths of many of Puget Sound's tributaries. A railroad runs along large portions of the eastern shoreline of Puget Sound, eliminating natural cover along the shore and natural recruitment of beach sand (SSPS 2007). Degradation of the near-shore environment has occurred in the southeastern areas of Hood Canal in recent years, resulting in late summer marine oxygen depletion and significant fish kills. Circulation of marine waters is naturally limited, and partially driven by freshwater runoff, which is often low in the late summer. However, human development has increased nutrient loads from failing septic systems along the shoreline, and from use of nitrate and phosphate fertilizers on lawns and farms. Shoreline residential development is widespread and dense in many places. The combination of highways and dense residential development has degraded certain physical and chemical characteristics of the near-shore environment (HCCC 2005; SSPS 2007).

<u>Critical Habitat within the Action Area:</u> The critical habitat at and adjacent to the project site primarily provides the Freshwater Migration PBF for PS Chinook salmon (NOAA 2023; WDFW 2023a).

2.3 Action Area

"Action area" means all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action (50 CFR 402.02).

The project site is located along the western shore of Lake Union about 0.8 miles west of the I-5 Bridge and 0.3 miles east of I-99 (Figure 1). As described in section 2.5, construction-related prey diminishment would be the stressor with the greatest range of effects on fish. Detectable effects would be limited to the waters and substrates within about 300 feet around the project site. However, trophic connectivity between PS Chinook salmon and the SR killer whales that feed on them extends the action area to the marine waters of Puget Sound. The described area overlaps with the geographic ranges of the ESA-listed species and the boundaries of designated critical habitats identified in Table 1. The action area also overlaps with areas that have been designated, under the MSA, as EFH for Pacific Coast salmon, Pacific Coast groundfish, and coastal pelagic species.

2.4 Environmental Baseline

The "environmental baseline" refers to the condition of the listed species or its designated critical habitat in the action area, without the consequences to the listed species or designated critical

habitat caused by the proposed action. The environmental baseline includes the past and present impacts of all Federal, State, or private actions and other human activities in the action area, the anticipated impacts of all proposed Federal projects in the action area that have already undergone formal or early section 7 consultations, and the impact of State or private actions which are contemporaneous with the consultation in process. The consequences to listed species or designated critical habitat from ongoing agency activities or existing agency facilities that are not within the agency's discretion to modify are part of the environmental baseline (50 CFR 402.02).

Climate Change: Climate change is a factor affecting the environmental baseline, aquatic habitats in general, and the status of the ESA-listed species considered in this opinion. Although its effects are unlikely to be spatially homogeneous across the region, climate change is likely to play an increasingly important role in determining the abundance and distribution of ESA-listed species and the conservation value of designated critical habitats in the Pacific Northwest. Major ecological realignments are already occurring in response to climate change (IPCC WGII, 2022). Long-term trends in warming have continued at global, national, and regional scales. Global surface temperatures in the last decade (2010s) were estimated to be 1.09 °C higher than the 1850-1900 baseline period, with larger increases over land ~1.6 °C compared to oceans ~0.88 °C (IPCC WGI, 2021). The vast majority of this warming has been attributed to anthropogenic releases of greenhouse gases (IPCC WGI, 2021). Globally, 2014 through 2018 were the 5 warmest years on record both on land and in the ocean (NOAA NCEI 2022). Events such as the 2013 through 2016 marine heatwave (Jacox et al. 2018) have been attributed directly to anthropogenic warming. Global warming and anthropogenic loss of biodiversity represent profound threats to ecosystem functionality (IPCC WGII 2022). These two factors likely have interacting effects on ecosystem function.

Updated projections of climate change are similar to or greater than previous projections (IPCC WGI, 2021). NMFS is increasingly confident in our projections of changes to freshwater and marine systems because every year brings stronger validation of previous predictions in both physical and biological realms. Retaining and restoring habitat complexity, access to climate refuges (both flow and temperature), and improving growth opportunity in both freshwater and marine environments are strongly advocated for in the recent literature (Siegel and Crozier 2020).

Climate change is systemic, influencing freshwater, estuarine, and marine conditions. Other systems are also being influenced by changing climatic conditions. Literature reviews on the impacts of climate change on Pacific salmon (Crozier 2015, 2016, 2017, Crozier and Siegel 2018, Siegel and Crozier 2019, 2020) have collected hundreds of papers documenting the major themes relevant for salmon. Below, we describe habitat changes relevant to Pacific salmon and steelhead, prior to describing how these changes result in the varied specific mechanisms impacting these species in subsequent sections.

Forests

Climate change will continue to impact forests of the western U.S., which dominate the landscape of many watersheds in the region. Forests are already showing evidence of increased

drought severity, forest fire, and insect outbreaks (Halofsky et al. 2020). Additionally, climate change will affect tree reproduction, growth, and phenology, which will lead to spatial shifts in vegetation. Halofsky et al. (2018) projected that the largest changes will occur at low- and high-elevation forests, with expansion of low-elevation dry forests and diminishing high-elevation cold forests and subalpine habitats.

Forest fires affect salmon streams by altering sediment load, channel structure, and stream temperature through the removal of canopy. Holden et al. (2018) examined environmental factors contributing to observed increases in the extent of forest fires throughout the western U.S. They found strong correlations between the number of dry-season rainy days and the annual extent of forest fires, as well as a significant decline in the number of dry-season rainy days over the study period (1984-2015). Consequently, predicted decreases in dry-season precipitation, combined with increases in air temperature, will likely contribute to the existing trend toward more extensive and severe forest fires and the continued expansion of fires into higher elevation and wetter forests (Alizedeh 2021).

Agne et al. (2018) reviewed literature on insect outbreaks and other pathogens affecting coastal Douglas-fir forests in the Pacific Northwest and examined how future climate change may influence disturbance ecology. They suggest that Douglas-fir beetle and black stain root disease could become more prevalent with climate change, while other pathogens will be more affected by management practices. Agne et al. (2018) also suggested that due to complex interacting effects of disturbance and disease, climate impacts will differ by region and forest type.

Freshwater Environments

The following is excerpted from Siegel and Crozier (2019), who present a review of recent scientific literature evaluating effects of climate change, describing the projected impacts of climate change on instream flows:

The magnitude of low river flows in the western U.S., which generally occur in September or October, and are driven largely by summer conditions and the prior winter's precipitation. Although, low flows are more sensitive to summer evaporative demand than to winter precipitation, interannual variability is greater for winter precipitation. Malek et al. (2018), predicted that summer evapotranspiration is likely to increase in conjunction with declines in snowpack and increased variability in winter precipitation, which suggests that summer flows are likely to become lower, more variable, and less predictable over time.

The effect of climate change on ground water availability is likely to be uneven. Sridhar et al. (2018) coupled a surface-flow model with a ground-flow model to improve predictions of surface water availability with climate change in the Snake River Basin. Projections using RCP 4.5 and 8.5 emission scenarios suggested an increase in water table heights in downstream areas of the basin and a decrease in upstream areas.

As cited in Siegel and Crozier (2019), Isaak et al. (2018), examined recent trends in stream temperature across the Western U.S. using a large regional dataset. Stream warming trends paralleled changes in air temperature and were pervasive during the low-water warm seasons of

1996-2015 (0.18-0.35°C/decade) and 1976-2015 (0.14-0.27°C/decade). Their results show how continued warming will likely affect the cumulative temperature exposure of migrating sockeye salmon O. nerka and the availability of suitable habitat for brown trout Salmo trutta and rainbow trout O. mykiss. Isaak et al. (2018) concluded that most stream habitats will likely remain suitable for salmonids in the near future, with some becoming too warm. However, in cases where habitat access is currently restricted by dams and other barriers salmon and steelhead will be confined to downstream reaches typically most at risk of rising temperatures unless passage is restored (FitzGerald et al. 2020; Myers et al. 2018).

Streams with intact riparian corridors and that lie in mountainous terrain are likely to be more resilient to changes in air temperature. These areas may provide refuge from climate change for a number of species, including Pacific salmon. Krosby et al. (2018), identified potential stream refugia throughout the Pacific Northwest based on a suite of features thought to reflect the ability of streams to serve as such refuges. Analyzed features include large temperature gradients, high canopy cover, large relative stream width, low exposure to solar radiation, and low levels of human modification. They created an index of refuge potential for all streams in the region, with mountain area streams scoring highest. Flat lowland areas, which commonly contain migration corridors, were generally scored lowest, and thus were prioritized for conservation and restoration. However, forest fires can increase stream temperatures dramatically in short timespans by removing riparian cover (Koontz et al. 2018), and streams that lose their snowpack with climate change may see the largest increases in stream temperature due to the removal of temperature buffering (Yan et al. 2021). These processes may threaten some habitats that are currently considered refugia.

Marine and Estuarine Environments

Along with warming stream temperatures and concerns about sufficient groundwater to recharge streams, a recent study projects nearly complete loss of existing tidal wetlands along the U.S. West Coast, due to sea level rise (Thorne et al. 2018). California and Oregon showed the greatest threat to tidal wetlands (100%), while 68% of Washington tidal wetlands are expected to be submerged. Coastal development and steep topography prevent horizontal migration of most wetlands, causing the net contraction of this crucial habitat.

Rising ocean temperatures, stratification, ocean acidity, hypoxia, algal toxins, and other oceanographic processes will alter the composition and abundance of a vast array of oceanic species. In particular, there will be dramatic changes in both predators and prey of Pacific salmon, salmon life history traits and relative abundance. Siegel and Crozier (2019) observe that changes in marine temperature are likely to have a number of physiological consequences on fishes themselves. For example, in a study of small planktivorous fish, Gliwicz et al. (2018) found that higher ambient temperatures increased the distance at which fish reacted to prey. Numerous fish species (including many tuna and sharks) demonstrate regional endothermy, which in many cases augments eyesight by warming the retinas. However, Gliwicz et al. (2018) suggest that ambient temperatures can have a similar effect on fish that do not demonstrate this trait. Climate change is likely to reduce the availability of biologically essential omega-3 fatty acids produced by phytoplankton in marine ecosystems. Loss of these lipids may induce cascading trophic effects, with distinct impacts on different species depending on compensatory

mechanisms (Gourtay et al. 2018). Reproduction rates of many marine fish species are also likely to be altered with temperature (Veilleux et al. 2018). The ecological consequences of these effects and their interactions add complexity to predictions of climate change impacts in marine ecosystems.

Perhaps the most dramatic change in physical ocean conditions will occur through ocean acidification and deoxygenation. It is unclear how sensitive salmon and steelhead might be to the direct effects of ocean acidification because of their tolerance of a wide pH range in freshwater (Ou et al. 2015 and Williams et al. 2019), however, impacts of ocean acidification and hypoxia on sensitive species (e.g., plankton, crabs, rockfish, groundfish) will likely affect salmon indirectly through their interactions as predators and prey. Similarly, increasing frequency and duration of harmful algal blooms may affect salmon directly, depending on the toxin (e.g., saxitoxin vs domoic acid), but will also affect their predators (seabirds and mammals). The full effects of these ecosystem dynamics are not known but will be complex. Within the historical range of climate variability, less suitable conditions for salmonids (e.g., warmer temperatures, lower stream flows) have been associated with detectable declines in many of these listed units, highlighting how sensitive they are to climate drivers (Ford 2022, Lindley et al. 2009, Ward et al. 2015; Williams et al. 2016). In some cases, the combined and potentially additive effects of poorer climate conditions for fish and intense anthropogenic impacts caused the population declines that led to these population groups being listed under the ESA (Crozier et al. 2019).

Climate change effects on salmon and steelhead

In freshwater, year-round increases in stream temperature and changes in flow will affect physiological, behavioral, and demographic processes in salmon, and change the species with which they interact. For example, as stream temperatures increase, many native salmonids face increased competition with more warm-water tolerant invasive species. Changing freshwater temperatures are likely to affect incubation and emergence timing for eggs, and in locations where the greatest warming occurs may affect egg survival, although several factors impact inter-gravel temperature and oxygen (e.g., groundwater influence) as well as sensitivity of eggs to thermal stress. Changes in temperature and flow regimes may alter the amount of habitat and food available for juvenile rearing, and this in turn could lead to a restriction in the distribution of juveniles, further decreasing productivity through density dependence. For migrating adults, predicted changes in freshwater flows and temperatures will likely increase exposure to stressful temperatures for many salmon and steelhead populations, and alter migration travel times and increase thermal stress accumulation for ESUs or DPSs with early-returning (i.e. spring- and summer-run) phenotypes associated with longer freshwater holding times (FitzGerald et al. 2020). Rising river temperatures increase the energetic cost of migration and the risk of in-route or pre-spawning mortality of adults with long freshwater migrations, although populations of some ESA-listed salmon and steelhead may be able to make use of cool-water refuges and runtiming plasticity to reduce thermal exposure (Barnett et al. 2020; Keefer et al. 2018).

Marine survival of salmonids is affected by a complex array of factors including prey abundance, predator interactions, the physical condition of salmon within the marine environment, and carryover effects from the freshwater experience (Burke et al. 2013; Holsman et al. 2012). It is generally accepted that salmon marine survival is size-dependent, and thus larger and faster

growing fish are more likely to survive (Gosselin et al. 2021). Furthermore, early arrival timing in the marine environment is generally considered advantageous for populations migrating through the Columbia River. However, the optimal day of arrival varies across years, depending on the seasonal development of productivity in the California Current, which affects prey available to salmon and the risk of predation (Chasco et al. 2021). Siegel and Crozier (2019) point out the concern that for some salmon populations, climate change may drive mismatches between juvenile arrival timing and prey availability in the marine environment. However, phenological diversity can contribute to metapopulation-level resilience by reducing the risk of a complete mismatch. Carr-Harris et al. (2018), explored phenological diversity of marine migration timing in relation to zooplankton prey for sockeye salmon O. nerka from the Skeena River of Canada. They found that sockeye migrated over a period of more than 50 days, and populations from higher elevation and further inland streams arrived in the estuary later, with different populations encountering distinct prey fields. Carr-Harris et al. (2018) recommended that managers maintain and augment such life-history diversity.

Synchrony between terrestrial and marine environmental conditions (e.g., coastal upwelling, precipitation and river discharge) has increased in spatial scale causing the highest levels of synchrony in the last 250 years (Black et al. 2018). A more synchronized climate combined with simplified habitats and reduced genetic diversity may be leading to more synchrony in the productivity of populations across the range of salmon (Braun et al. 2016). For example, salmon productivity (recruits/spawner) has also become more synchronized across Chinook populations from Oregon to the Yukon (Dorner et al. 2018; Kilduff et al. 2014). In addition, Chinook salmon have become smaller and younger at maturation across their range (Ohlberger 2018). Other Pacific salmon species (Stachura et al. 2014) and Atlantic salmon (Olmos et al. 2020) also have demonstrated synchrony in productivity across a broad latitudinal range.

At the individual scale, climate impacts on salmon in one life stage generally affect body size or timing in the next life stage and negative impacts can accumulate across multiple life stages (Gosselin et al. 2021; Healey 2011; Wainwright and Weitkamp 2013). Changes in winter precipitation will likely affect incubation and/or rearing stages of most populations. Changes in the intensity of cool season precipitation, snow accumulation, and runoff could influence migration cues for fall, winter and spring adult migrants, such as coho and steelhead. Egg survival rates may suffer from more intense flooding that scours or buries redds. Changes in hydrological regime, such as a shift from mostly snow to more rain, could drive changes in life history, potentially threatening diversity within an ESU (Beechie et al. 2006). Changes in summer temperature and flow will affect both juvenile and adult stages in some populations, especially those with yearling life histories and summer migration patterns (Crozier and Zabel 2006; Crozier et al. 2010).

At the population level, the ability of organisms to genetically adapt to climate change depends on how much genetic variation currently exists within salmon populations, as well as how selection on multiple traits interact, and whether those traits are linked genetically. While genetic diversity may help populations respond to climate change, the remaining genetic diversity of many populations is highly reduced compared to historic levels. For example, Johnson et al. (2018), compared genetic variation in Chinook salmon from the Columbia River Basin between contemporary and ancient samples. A total of 84 samples determined to be Chinook salmon were

collected from vertebrae found in ancient middens and compared to 379 contemporary samples. Results suggest a decline in genetic diversity, as demonstrated by a loss of mitochondrial haplotypes as well as reductions in haplotype and nucleotide diversity. Genetic losses in this comparison appeared larger for Chinook from the mid-Columbia than those from the Snake River Basin. In addition to other stressors, modified habitats and flow regimes may create unnatural selection pressures that reduce the diversity of functional behaviors (Sturrock et al. 2020). Managing to conserve and augment existing genetic diversity may be increasingly important with more extreme environmental change (Anderson et al. 2015), though the low levels of remaining diversity present challenges to this effort (Freshwater 2019). Salmon historically maintained relatively consistent returns across variation in annual weather through the portfolio effect (Schindler et al. 2015), in which different populations are sensitive to different climate drivers. Applying this concept to climate change, Anderson et al (2015) emphasized the additional need for populations with different physiological tolerances. Loss of the portfolio increases volatility in fisheries, as well as ecological systems, as demonstrated for Fraser River and Sacramento River stock complexes (Freshwater et al. 2019; Munsch et al. 2022).

Environmental conditions at the project sites and the surrounding area: The project site is located in Seattle, Washington, along the west bank of Lake Union (Figure 1). Although the action area includes the marine waters of Puget Sound, all detectable effects of the action would be limited to Lake Union. Therefore, this section focuses on habitat conditions in Lake Union, and does not discuss Puget Sound habitat conditions.

The geography and ecosystems in and adjacent to Lake Union have been dramatically altered by human activity since European settlers first arrived in the 1800s. Historically, a small stream flowed from Lake Union to Shilshole Bay, with no surface water connection between Lake Union and Lake Washington. The waters of Lake Washington flowed south to the Duwamish River via the now absent Black River. The ship canal was created by intense dredging and excavation that began in the 1880s to provide a navigable passage between Lake Washington and the marine waters of Shilshole Bay. It was completed in 1916. As part of this, the Hiram M. Chittenden Locks (aka Ballard Locks) were constructed west of Salmon Bay to maintain navigable water levels in the canal and lakes. This permanently converted Salmon Bay from an estuary to freshwater.

The canal is 8.6 miles long, about 150 to 260 feet wide in the cuts, and widens at Portage Bay, Lake Union, and Salmon Bay (Figure 1). Flows through canal are highly controlled by the locks, and are typically very slow. The canal supports high levels of commercial and recreational vessel traffic. Very little natural shoreline exists along the banks of the ship canal. Instead of slopes that gently rise to the surface, as typically occurs along the banks of natural streams, the bank slope along most of the canal is vertical. In cross-section, the canal closely resembles an elongated box culvert along most of its length, and about 96% of the canal's banks are armored (City of Seattle 2008). The depths along the edges are typically between 10 and 20 feet, and the average depth in the navigational channel is about 30 feet.

The vast majority of the canal is lined by shipyards, industrial properties, large marinas, and residential piers. Unbroken urban development extends north and south immediately landward of

both shorelines. With the exception of the southern shoreline of Portage Bay, and along the armored banks of the Fremont and Mountlake Cuts, very little riparian vegetation exists along the banks of the canal.

Water quality within the canal is influenced by the inflow of freshwater from Lake Washington, by point and non-point discharges all along the waterway, and by a saltwater lens that intrudes through the Ballard Locks. Industrial, commercial, and residential development has impacted water quality in the lake since before the canal was completed. Lumber and plywood mills, machine shops, metal foundries, fuel and oil facilities, concrete and asphalt companies, power plants, shipyards, marinas, commercial docks, and houseboats were quickly developed along the shoreline of the lake and canal. Virtually all of the early industrial, commercial, and residential facilities discharged untreated wastes directly to the lake and canal, some of which persisted into the 1940s and beyond. Stormwater drainage has, and continues to add to pollutant loading. Most of the direct discharge of raw sewage was stopped and the gas plant ceased operation during the 1960s.

Since 1979, water temperatures in the ship canal have increased an average of 1° Celsius (C) per decade, with temperatures that can reach 20 to 22° C during the summer and early fall, and the number of days that temperatures are in that range is increasing (City of Seattle 2010). Temperatures of 23 to 25° C can be lethal for salmon. Saltwater intrusion through the locks creates a wedge of high-density saltwater that can extend into and past Lake Union during low flow periods, and often becomes anoxic early in the summer as bacteria consume organics in the sediment. Dissolved oxygen concentrations range from 9.5 to 12.6 mg/L during the winter and spring, but can decrease to as low as 1 mg/L during the summer months.

Today, the overall water quality in the canal has improved substantially compared to the 1960s. However, the waters of the canal and Lake Union, including the project site, are identified on the current Washington State Department of Ecology (WDOE) 303(d) list of threatened and impaired water bodies for lead and temperature (Category 5). Other water quality listings at the project site include total phosphorus and bacteria (Category 1) (WDOE 2023). Sediment listings at the project site include High Molecular Weight Polycyclic Aromatic Hydrocarbons (HPAH), Low Molecular Weight Polycyclic Aromatic Hydrocarbons (LPAH) (Category 4b), and Sediment Bioassay (Category 1) (WDOE 2023).

The artificial shorelines and widespread presence of overwater structures along the length of the canal and much of Lake Union provide habitat conditions that favor fish species that prey on juvenile salmonids, such as the non-native smallmouth bass. Other predators in the canal include the native northern pikeminnow and the non-native largemouth bass (Celedonia et al. 2008a and b; Tabor et al. 2010). Tabor et al. (2010) estimated that about 3,400 smallmouth bass and 2,500 largemouth bass, large enough to consume salmon smolt were in the ship canal. They also estimated that smallmouth bass consumed about 48,000 salmon smolts annually, while largemouth bass consumed about 4,200 smolts. Of those, over half were Chinook salmon. Predation appeared to be highest near Portage Bay in June when smolts made up approximately 50% of the diet for smallmouth bass, and about 45% for northern pikeminnow. Returning adult salmon and steelhead are often exposed to excessive predation by pinniped marine mammals

(seals and sea lions) that feed on the fish that accumulate downstream of the fish ladder at the locks.

At the project site, the substrate consists of silty sands and muds, and anthropogenic debris, with low levels of submerged aquatic vegetation (SAV). Additionally, the applicant's pier likely induces migratory delays for juvenile salmonids, and provides habitat conditions that favor piscivorous fish such northern pikeminnow, smallmouth bass, and largemouth bass that prey on juvenile salmonids.

The past and ongoing anthropogenic impacts described above have reduced the action area's ability to support migrating PS Chinook salmon and PS steelhead. However, the action area continues to provide migratory habitat for adults and juveniles of both species, and the area has been designated as critical habitat for PS Chinook salmon.

2.5 Effects of the Action

Under the ESA, "effects of the action" are all consequences to listed species or critical habitat that are caused by the proposed action, including the consequences of other activities that are caused by the proposed action (see 50 CFR 402.02). A consequence is caused by the proposed action if it would not occur but for the proposed action and it is reasonably certain to occur. Effects of the action may occur later in time and may include consequences occurring outside the immediate area involved in the action (see 50 CFR 402.17). In our analysis, which describes the effects of the proposed action, we considered the factors set forth in 50 CFR 402.17(a) and (b).

The potential effects of the proposed action can be generally characterized as direct and indirect work-related effects, and long-term indirect effects associated with the structure and its use. The work-related effects would include noise, water contamination, and forage diminishment. The USACE's authorization of the project would also have the additional effect of extending the operational life of the applicant's pier by several decades beyond that of the existing pier. Over that time, the pier's presence and normal operations would cause effects on fish and habitat resources through pier-related altered lighting, pollutants, elevated noise, propeller wash, and forage diminishment.

The action's work window avoids the normal migration seasons for juvenile and adult PS Chinook salmon, when those life stages would be most likely be present. During the work window, PS Chinook salmon are extremely unlikely to present at or adjacent to the project site. The work window overlaps slightly with the normal migration seasons for juvenile and adult PS steelhead. However, PS steelhead are very rare in the Lake Washington watershed, which supports the expectation that it is extremely unlikely that any PS steelhead would be present during project-related work. Therefore, it is extremely unlikely that either species would be exposed to the direct effects of the proposed action. However, both species could be exposed to the action's long-term indirect effects which would occur year-round.

The normal behaviors of juvenile Chinook salmon in the freshwater emigration phase of their life cycle include a strong tendency toward shoreline obligation. This means that they are biologically compelled to follow and stay close to streambanks and shorelines. As such, they are

likely to pass through and forage within the project area. Out-migrating juvenile steelhead are much less tied to shoreline habitats. However, some emigrating juvenile steelhead are likely to pass through and forage within the project area over the proposed action's years-long effects on forage at the site. Therefore, it is very likely that juvenile PS Chinook salmon and juvenile PS steelhead would pass through the project area during their annual emigration seasons, where they would be exposed to the action's indirect effects identified above. Conversely, adults of both species are most likely to stay close to the center of the ship canal during the migration back to their natal streams. As such, they are very unlikely linger near the project area. Further, based on their size and the cessation of feeding while in freshwater, especially for Chinook salmon, they are very unlikely to be measurably affected by exposure to any of the project's indirect effects. For this reason, the remainder of this analysis will focus on juvenile PS Chinook and juvenile PS steelhead. The PBFs of PS Chinook salmon critical habitat would also be exposed to the action's direct and indirect effects.

2.5.1 Effects on Listed Species

Effects on species are a function of exposure and response. The duration, intensity, and frequency of exposure, and the life stage at exposure all influence the degree of response.

Work-related Direct Effects

PS Chinook salmon and PS steelhead are extremely unlikely to be present during the proposed work window. Therefore, it is extremely unlikely that they would be exposed to or affected by any work-related direct effects (i.e. construction-related noise, water contamination, and propeller wash). However, juveniles of both species are likely to be exposed to work-related forage diminishment, along with the effects of pier-related altered lighting, pollutants, elevated noise, and propeller wash, which are analyzed immediately below. Because the project would have numerous sources of impact on forage resources, work- and pier-related forage diminishment will be analyzed together after the other stressors have been analyzed.

Pier-related Altered Lighting

Pier-related altered lighting is likely to adversely affect juvenile PS Chinook salmon and juvenile PS steelhead, but cause minor effects in adults of both species.

At the end of the project, the applicant's pier would extend 328 feet from the shoreline and have an overwater footprint of 3,204 square feet. The water depths under the repaired pier would range to about 12 feet at its offshore end. Although the project would fully grate the pier's decking, the pier, and the houseboats and vessels moored to it would create unnatural daytime shade over the water and aquatic substrate. The intensity of shadow effects are likely to vary based on the brightness and angle of the sun. They would be most intense on sunny days, and less pronounced to possibly inconsequential on cloudy days. Additionally, the moored houseboats and vessels would also create over-water artificial illumination at night.

<u>Shade</u>: Although the repaired pier's shade intensity would be reduced compared to the existing conditions, the pier, and the houseboats and vessels moored to it would continue to cast shadows

the over water and aquatic substrate and maintain conditions under and adjacent to the pier's footprint that reduce aquatic productivity, alter juvenile salmonid migratory behaviors, and increase juvenile salmonids' exposure and vulnerability to predators as compared to unshaded similar habitat.

Shade limits primary productivity and can reduce the diversity of the aquatic communities under over-water structures (Nightingale and Simenstad 2001; Simenstad et al. 1999). Because the water and substrate under the repaired pier would be more supportive of SAV and benthic invertebrates in the absence of the shade caused by the pier and its moored houseboats and vessels, pier-related shade would continue to reduce the availability and quality of natural cover and forage for juvenile salmonids at the project site. The shade-related SAV reduction would reduce the availability of natural cover under and adjacent to the pier, which would increase juvenile salmonids' exposure and vulnerability to piscivorous predatory fish that frequently reside in the shadows of over-water structures. The effects of increased exposure and vulnerability to predators is discussed in more detail after the analysis of shade-related migratory impacts below. Shade-related reduced productivity would also reduce the availability and quality of forage resources in the area adjacent to the pier. Shade-related reduced productivity would also reduce the availability and quality for forage resources for migrating juvenile salmonids, which is discussed in more detail under forage diminishment.

The shade of over-water structures also negatively affects juvenile salmonid migration. Numerous studies demonstrate that juvenile salmonids, in both freshwater and marine habitats, are more likely to avoid an overwater structure's shadow than to pass through it (Celedonia et al. 2008a and b; Kemp et al. 2005; Moore et al. 2013; Munsch et al. 2014; Nightingale and Simenstad 2001; Ono et al. 2010; Southard et al. 2006; Tabor et al. 2006).

Therefore, the shade of the repaired pier is likely to continue altering the migratory behavior for at least some of the juvenile Chinook salmon that pass through the project area. It would inhibit some from migrating along the shoreline, which is typical behavior for juvenile Chinook salmon emigrating from freshwater. The shade would delay the passage under the pier for some, and or induce some individuals to swim around it, effectively forcing them to remain in open and relatively deep waters. The off-bank migration of these small fish increases migration distance and time, which has been positively correlated with increased mortality in juvenile Chinook salmon (Anderson et al. 2005), and it increases energetic costs (Heerhartz and Toft 2015). Shade-related altered migratory behaviors would mostly affect juvenile PS Chinook salmon, because the juvenile PS steelhead that would annually pass the project area would be relatively large and shoreline independent.

Additionally, shade and deep water both favor freshwater predatory species, such as smallmouth bass and northern pikeminnow that are known to hide under over-water structures, and to prey heavily on juvenile salmonids (Celedonia et al. 2008a; Tabor et al. 2010). The deeper water away from the bank also increases the risk of predation for migrating juvenile salmonids (Willette 2001). Further, the reduced availability of natural cover, identified above, under shade-related reduced SAV production, would limit shelter resources for juvenile salmonids, which increases their exposure and vulnerability to predatory fish. Therefore, juvenile PS Chinook salmon and

juvenile PS steelhead that are in close proximity to the repaired pier would be at more risk of predation than they would be in the pier's absence.

Artificial Illumination: The repaired pier and its moored houseboats and vessels would have lighting systems that would cause nighttime artificial illumination of lake waters. Nighttime artificial illumination of the water's surface attracts fish (positive phototaxis) in marine and freshwater environments. It often shifts nocturnal behaviors toward more daylight-like behaviors, and it can affect light-mediated behaviors such as migration timing (Becker et al. 2013; Celedonia and Tabor 2015; Ina et al. 2017; Tabor and Piaskowski 2002; Tabor et al. 2017).

Tabor and Piaskowski (2002) report that juvenile Chinook salmon in lacustrine environments typically feed and migrate during the day, and are inactive at night, residing at the bottom in shallow waters. They tend to move off the bottom and become increasingly active at dawn when light levels reach 0.8 to 2.1 lumens per square meter. Tabor et al. (2017) found that sub-yearling Chinook, coho, and sockeye salmon exhibit strong nocturnal phototaxic behavior when exposed to levels of 5.0 to 50.0 lumens per square meter, with phototaxis positively correlated with light intensity. Celedonia and Tabor (2015) found that juvenile Chinook salmon in the Lake Washington Ship Canal were attracted to artificially lit areas at 0.5 to 2.5 lumens per square meter. The authors also reported that attraction to artificial lights may delay the onset of morning migration by up to 25 minutes for some juvenile Chinook salmon migration through the Lake Washington Ship Canal.

Definitive information to quantify the over-water illumination from the pier and its moored houseboats and vessels is unavailable. In its absence, this assessment assumes that artificial lighting from the pier and or its moored houseboats and vessels would illuminate the water's surface at intensities above 0.5 lumens per square meter out as far as about 50 feet from the illuminated structures. Therefore, pier-related artificial illumination is likely to cause phototaxis and delayed morning migration for juvenile Chinook salmon and juvenile steelhead that are within that distance.

In summary, pier-related altered lighting would cause some combination of altered behaviors and increased risk of predation that would reduce fitness or cause mortality for some juvenile PS Chinook salmon and juvenile PS steelhead that pass the site. The annual numbers of those listed fish that may be exposed to this stressor are unquantifiable with any degree of certainty, and likely to be highly variable over time. However, the best available information about the numerous routes taken by juvenile salmonids emigrating through the canal and Lake Union support the understanding that the juvenile PS Chinook salmon and juvenile PS steelhead that would annually emigrate through the project area would be small and variable subsets of their respective populations' cohorts. Further, the number of individuals that are likely to be meaningfully affected by the exposure would most likely comprise a small subset of the total number of the individuals that pass though the affected area. Therefore, the annual numbers of juvenile PS Chinook salmon and PS steelhead that would be meaningfully affected by this stressor would be too low to cause detectable population-level effects.

Pier-related Pollutants

Pier-related pollutants would adversely affect adversely affect juvenile PS Chinook salmon and juvenile PS steelhead, but cause minor effects in adults of both species.

For decades to come, small amounts of pier-related pollutants are likely to routinely enter lake waters from leaks, spills, and other discharges, including stormwater, from the house boats and vessels moored to the repaired pier. Houseboat pollutants would likely consist of common household materials such as flame-retardant materials, paints, cleaners, and pesticides. Additionally, some of the float structures of the moored houseboats may include creosote-treated wood. Most of the fuels, lubricants, and other fluids commonly used in powered vessels are petroleum-based. A large body of information indicates that most of the household and vessel-related pollutants contain numerous toxic chemicals that are known to be injurious to fish and other aquatic life such as chlorine, metals, PAHs, polybrominated diphenyl ethers (PBDEs), phlalates, sulphates, and many other compounds.

Household pollutants may enter the water directly through spills and or intentional discharges. They may also accumulate on the houseboat decks and pier walkways and enter the water later via stormwater. Vessel-related chemicals would enter the water via the small leaks and spills that are common to their normal maintenance and operation. Occasionally, larger spills and discharges could occur. Creosote-treated wood leaches PAHs to the water, and anti-fouling hull paints leach copper. The untreated stormwater from houseboats would discharge directly into Lake Union, carrying many of the pollutants identified above. Additionally, numerous pollutants that are known to be harmful to fish and other aquatic resources, accumulate on building rooftops from common roofing materials, rooftop structures, and from atmospheric deposition (Lye 2009; WDOE 2008; 2014).

Chinook salmon, steelhead, and other fish can uptake contaminants directly through their gills, and through dietary exposure (Karrow et al. 1999; Lee and Dobbs 1972; McCain et al. 1990; Meador et al. 2006; Neff 1982; Varanasi et al. 1993). Impacts via the trophic web are discussed below, under forage diminishment.

Depending on the pollutant, its concentration, and or the duration of exposure, exposed fish may experience effects that can range from avoidance of an affected area, to reduced growth, altered immune function, and mortality (Beitinger and Freeman 1983; Brette et al. 2014; Feist et al. 2011; Gobel et al. 2007; Incardona et al. 2004, 2005, and 2006; McIntyre et al. 2012; Meadore et al. 2006; Sandahl et al. 2007; Spromberg et al. 2015). PAHs can cause reduced growth, increased susceptibility to infection, and increased mortality in juvenile salmonids (Eisler 1987; Meador et al. 2006; Varanasi et al. 1993). Gill tissues are highly susceptible to damage because they actively pass large volumes of water and are thereby exposed to PAHs present in water (USACE 2016). Other effects include damage to the skin, fins, and eyes, as well as damage to internal organs as liver tumors. PBDEs can reduce immunity and increase disease susceptibility in juvenile Chinook salmon (Arkoosh et al. 2018). Zinc can bind to fish gills and cause suffocation (WDOE 2008). In freshwater, exposure to dissolved copper at concentrations between 0.3 to 3.2 µg/L above background levels has been shown to cause avoidance of an area, to reduce salmonid olfaction, and to induce behaviors that increase juvenile salmon's vulnerability to predators

(Giattina et al. 1982; Hecht et al. 2007; McIntyre et al. 2012; Sommers et al. 2016; Tierney et al. 2010).

Some combination of the discharges discussed above would occur repeatedly over the decadeslong life of the repaired pier. The concentrations of those discharges are uncertain and likely to be highly variable over time. They would also be additive to the background pollutant concentrations that exist at the project site from the high number of adjacent marinas and houseboat-mooring piers, the high levels of vessel operation in lake Union, and the numerous outfalls that discharge stormwater into Lake Union from the local roads. Based on the best available information, the NMFS expects that action-related discharges would episodically cause the in-water pollutant concentrations in the area adjacent to the repaired pier to exceed the threshold for the onset of meaningful effects in exposed juvenile salmonids. The NMFS further expects that that over the life of the repaired pier, the presence of pollutant concentrations above the threshold for the onset of meaningful effects in juvenile salmonids would occasionally overlap with the presence of some juvenile Chinook salmon and juvenile steelhead. Therefore, some juvenile Chinook salmon and juvenile steelhead are likely to be exposed to pier-related inwater pollutant concentrations that would meaningfully alter their normal behaviors and or reduce their fitness. The size of the meaningfully affected area is also uncertain, but would likely extend no more than 300 feet from the pier.

The annual numbers of juveniles of either species that may be exposed to pier-related pollutants are unquantifiable with any degree of certainty, and are likely to be highly variable over time, as are the contaminant concentrations, and the intensity of any effects that an exposed individual may experience. However, for the same reasons expressed for pier-related altered lighting, the annual numbers of PS Chinook salmon and PS steelhead that may enter the project area would comprise small and variable subsets of their respective cohorts. Further, the typically episodic and short-duration presence of pier-related pollutants suggests that the probability and duration of exposure would be very low for any individual fish. Therefore, the annual numbers of PS Chinook salmon and PS steelhead that would be meaningfully affected by the exposure would represent extremely small subsets of their respective cohorts, and too low to cause detectable population-level effects.

Pier-related Noise

Exposure to pier-related noise is likely to adversely affect juvenile PS Chinook salmon and juvenile PS steelhead, but cause minor effects in adults of both species.

Elevated in-water noise at levels capable of causing detectable effects in exposed fish would be caused by vessel operations at the repaired pier. The effects caused by a fish's exposure to noise vary with the hearing characteristics of the fish, the frequency, intensity, and duration of the exposure, and the context under which the exposure occurs. At low levels, effects may include the onset of behavioral disturbances such as acoustic masking (Codarin et al. 2009), startle responses and altered swimming (Neo et al. 2014), abandonment or avoidance of the area of acoustic effect (Mueller 1980; Picciulin et al. 2010; Sebastianutto et al. 2011; Xie et al. 2008) and increased vulnerability to predators (Simpson et al. 2016). At higher intensities and or longer exposure durations, the effects may rise to include temporary hearing damage (a.k.a. temporary

threshold shift or TTS, Scholik and Yan 2002) and increased stress (Graham and Cooke 2008). At even higher levels, exposure may lead to physical injury that can range from the onset of permanent hearing damage (a.k.a. permanent threshold shift or PTS) and mortality. The best available information about the auditory capabilities of the fish considered in this opinion suggest that their hearing capabilities are limited to frequencies below 1,500 Hz, with peak sensitivity between about 200 and 300 Hz (Hastings and Popper 2005; Picciulin et al. 2010; Scholik and Yan 2002; Xie et al. 2008).

The NMFS uses two metrics to estimate the onset of injury for fish exposed to high intensity impulsive sounds (Stadler and Woodbury 2009). The metrics are based on exposure to peak sound level and sound exposure level (SEL). Both are expressed in decibels (dB). The metrics are: 1) exposure to 206 dB_{peak}; and 2) exposure to 187 dB SEL_{cum} for fish 2 grams or larger, or 183 dB SEL_{cum} for fish under 2 grams. Further, any received level (RL) below 150 dB_{SEL} is considered "Effective Quiet". The distance from a source where the RL drops to 150 dB_{SEL} is considered the maximum distance from that source where fishes can potentially experience TTS or PTS from the noise, regardless of accumulation of the sound energy (Stadler and Woodbury 2009). When the range to the 150 dB_{SEL} isopleth exceeds the range to the applicable SEL_{CUM} isopleth, the distance to the 150 dB_{SEL} isopleth is typically considered the range at which detectable behavioral effects would begin, with the applicable SEL_{CUM} isopleth identifying the distance within which sound energy accumulation would intensify effects. However, when the range to the 150 dB_{SEL} isopleth is less than the range to the applicable SEL_{CUM} isopleth, only the 150 dB_{SEL} isopleth would apply because no accumulation effects are expected for noise levels below 150 dB_{SEL}. This assessment considers the range to the 150 dB_{SEL} isopleths as the maximum ranges for detectable acoustic effects from exposure to work-related noise.

The discussion in Stadler and Woodbury (2009) indicate that these thresholds likely overestimate the potential effects of exposure to impulsive sounds. Further, Stadler and Woodbury's assessment did not consider non-impulsive sound, which is believed to be less injurious to fish than impulsive sound. Therefore, application of the criteria to non-impulsive sounds is also likely to overestimate the potential effects in fish. However, these criteria represent the best available information. Therefore, to avoid underestimating potential effects, this assessment applies these criteria to the impulsive and non-impulsive sounds that are expected from dock-related noise to gain a conservative idea of the potential effects that fish may experience due to exposure to that noise.

Elevated in-water noise at levels capable of causing detectable effects in exposed fish would be episodically caused by recreational vessel operations at the applicant's pier. Based on satellite imagery of the pier, the repaired pier would continue to provide mooring for about 10 recreational power boats and sailboats between 14 and 60 feet in length, with most being 20 to 35 feet long.

The estimated in-water source levels (SL, sound level at 1 meter from the source) and acoustic signature information used in this assessment are based on an acoustic assessment for a similar project (NMFS 2018) and in numerous sources that describe sound levels for ocean-going ships, tugboats, and recreational vessels (Blackwell and Greene 2006; McKenna et al. 2012; Picciulin et al. 2010; Reine et al. 2014; Richardson et al. 1995). In this assessment, we used vessel noise

from an 85-foot long ferry, tugboats, and a 23-foot long power boat as surrogates for the mix of vessels likely to moor at the applicant's pier. All of the expected peak source levels are below the $206 \ dB_{peak}$ threshold for instantaneous injury in fish.

In the absence of location-specific transmission loss data, variations of the equation RL = SL - #Log(R) are often used to estimate the received sound level at a given range from a source (RL = RLog(R)) are often used to estimate the received sound level at a given range from a source (RL = RLog(R)) are often used to estimate the received sound level at a given range from a source (RL = RLog(R)) are source level (RLog(R)). The source level (RLog(R)) are source level (RLog(R)) are source level (RLog(R)) and RLog(R) are source level (RLog(R)). This value is considered the practical spreading loss coefficient, and was used for all sound attenuation calculations in this assessment. Application of the practical spreading loss equation to the expected SEL SLs suggests that noise levels above the 150 dB_{SEL} threshold would extend between about 33 feet (10 m) and 207 feet (63 m) from the representative vessels (Table 5).

Table 5. Estimated in-water source levels for vessels with noise levels similar to those likely to moor at the applicant's repaired pier, and ranges to effects thresholds for fish.

Source	Acoustic Signature	Source Level	Threshold
			Range
85 foot Tourist Ferry	< 2 kHz Combination	187 dB _{peak}	206 @ N/A
Episodic periods measured in minutes to hours		$177 \text{ dB}_{\text{SEL}}$	150 @ 63 m
Tugboat	< 2 kHz Combination	185 dB _{peak}	206 @ N/A
Episodic periods measured in minutes to hours		$170 \text{ dB}_{\text{SEL}}$	150 @ 22 m
23 foot Boat w/ 2 4~ 100 HP Outboard Engines.	< 2 kHz Combination	175 dB _{peak}	206 @ N/A
Episodic brief periods measures in minutes		$165 \text{ dB}_{\text{SEL}}$	150 @ 10 m

Individual vessel operations around mooring structures typically consist of brief periods of relatively low-speed movement as boats are driven to the docks and tied up. Their engines are typically shut off within minutes of arrival. The engines of departing vessels are typically started a few minutes before the boats are untied and driven away, and it is extremely unlikely that vessels would be run at anything close to full speed while near the applicant's pier. However, they may briefly use high power settings while maneuvering.

To be protective of fish, this assessment estimates that pier-related in-water vessel noise levels above the $150~\mathrm{dB_{SEL}}$ threshold could routinely extend 72 feet (22 m) around the pier. Vessel noise levels would be non-injurious. However, juvenile Chinook salmon and steelhead that are within the $150~\mathrm{dB_{SEL}}$ isopleth, are likely to experience behavioral disturbances, such as acoustic masking, startle responses, altered swimming patterns, avoidance, and increased risk of predation. The intensity of these effects would increase with increased proximity to the source and or duration of exposure. Response to this exposure would be non-lethal in most cases, but some individuals may experience stress and fitness effects that could reduce their long-term survival, and individuals that are eaten by predators would be killed.

The annual numbers of juveniles of either species that may be exposed to pier-related noise are unquantifiable with any degree of certainty, and are likely to be highly variable over time, as are the intensity of effects that any exposed individual may experience. However, for the same reasons expressed for pier-related altered lighting, the annual numbers of PS Chinook salmon

and PS steelhead that may enter the project area would comprise small and variable subsets of their respective cohorts. Further, the typically episodic and short-duration of vessel operations at the pier, combined with the knowledge that peak boating season occurs after the juveniles have left the ship canal suggests that the probability and duration of exposure would be very low for any individual fish. Therefore, the annual numbers of PS Chinook salmon and PS steelhead that would be meaningfully affected by exposure to pier-related noise would represent extremely small subsets of their respective cohorts, and would be too low to cause detectable population-level effects.

Pier-related Propeller Wash:

Pier-related propeller wash would adversely affect juvenile PS Chinook salmon and juvenile PS steelhead, but cause only minor effects in adults of both species. Spinning boat propellers kill fish and small aquatic organisms (Killgore et al. 2011; VIMS 2011). Spinning propellers also generate fast-moving turbulent water (propeller wash) that can displace and disorient small fish, as well as dislodge benthic aquatic organisms and SAV, particularly in shallow water and or at high power settings (propeller scour).

The juvenile Chinook salmon and steelhead that would be within the project area are likely to remain close to the surface where they may be exposed to spinning propellers and powerful propeller wash near the pier. Additionally, juvenile Chinook salmon tend to stay as close to shore as possible. Conversely, adults of both species would tend to swim offshore and below the surface, and they would be able to swim against most propeller wash they might be exposed to, without experiencing any measurable effect on their fitness or normal behaviors.

Juveniles that are struck or very nearly missed by spinning propellers at the new pier would be injured or killed by the exposure. At greater distances, the propeller wash may displace and disorient fish. Depending on the direction and strength of the thrust plume, displacement could increase energetic costs, reduce feeding success, and may increase the vulnerability to predators for individuals that tumble stunned and or disoriented in the wash. Although the likelihood of this interaction is very low for any individual fish or individual boat trip, it is very likely that over the decades-long life of the pier, at least some juvenile PS Chinook salmon and juvenile PS steelhead would experience reduced fitness or mortality from exposure to spinning propellers and or propeller wash at the applicant's pier.

Pier-related propeller scour is unlikely to cause any detectable effects on the fitness and normal behaviors of Chinook salmon and steelhead. The expectation that low power settings would be used when maneuvering near the houseboats, combined with the depth of the water under the pier suggests that propeller scour would have negligible effects on benthic resources at the sites.

The annual numbers of juvenile PS Chinook salmon and PS steelhead that would be exposed to this stressor, and the intensity of any effects that an exposed individual may experience are unquantifiable with any degree of certainty. However, for the same reasons expressed for pier-related altered lighting, the annual numbers of PS Chinook salmon and PS steelhead that may enter the project area would comprise small and variable subsets of their respective cohorts. Further, the typically episodic and short-duration of vessel operations at the dock, combined with the knowledge that the peak boating season occurs after the juveniles have left the ship canal

suggests that the probability and duration of exposure would be very low for any individual fish. Therefore, the annual numbers of PS Chinook salmon and PS steelhead that may be exposed to pier-related propeller wash would represent extremely small subsets of their respective cohorts, and the numbers of fish that would be meaningfully affected would be too low to cause detectable population-level effects.

Forage Diminishment

Forage diminishment is likely to adversely affect juvenile PS Chinook salmon and juvenile PS steelhead. It is extremely unlikely that adults of either species would be exposed to this stressor.

Juvenile salmon feed on planktonic organisms such as amphipods, copepods, and euphausiids, as well as the larvae of benthic species and fish (NMFS 2006). The proposed action is likely to reduce availability and quality of these forage organisms through the introduction of pollutants and various impacts of productivity at the project site. Pile repair work is likely to mobilize contaminated sediments. Work-related tugboat operations are also likely to mobilize and or spread contaminated sediments, and may also cause propeller scour of benthic organisms. Also, as identified above under pier-related altered lighting and pollutants, the continued presence of the repaired pier and its related operations are likely to cause adverse impacts on forage resources at the project site. The size of the meaningfully affected area is uncertain, but would likely be limited to the distance that pier-attributable contaminant particles would be detectable around the pier, estimated to be no more than 300 feet, based on numerous consultations for similar work.

Contaminated sediments: The sediments at the project site are documented as contaminated with PAHs (WDOE 2023), and they also likely contain some level of legacy contaminants that could include Polychlorinated Biphenyls (PCBs), and various metals. The exact method of "hand digging" that would be done to remove sediments from around the bases of the 14 piles to be repaired is unreported. To avoid underestimating the potential effects of this work, this assessment assumes that divers would use a hand-held induction dredge or similar small hydraulic suction device to temporarily remove the top 2 feet of bottom sediments from around the base of the piles, then again to return the sediments around the repaired piles. During this work, subsurface sediments would be briefly mobilized into the water column. Most would be deposited in a pile a few feet from the pile being worked on, but some would be carried by the current as suspended sediments, eventually settling to the lake bed nearby. This mobilization would likely occur again when the sediments are returned the area around the base of the repaired pile. Additionally, the sediments may be remobilized and spread by tugboat propeller wash.

<u>Tugboat propeller scour:</u> During in-water work, the propeller wash from tugboat operations is likely to periodically impact the lakebed with enough thrust to wash away (scour) SAV and benthic organisms from the impacted area. This would most likely occur infrequently, and cause relatively small areas where SAV and benthic organisms removed. If left undisturbed, the SAV and benthic community would recover over time, but it could take a year or more before the scoured area(s) return to per-construction conditions.

<u>Pier-related altered lighting:</u> As discussed above, as compared to unshaded similar habitat, the shade of the repaired pier and its moored houseboats and vessels would maintain a state of slightly reduced availability, diversity, and quality of the SAV and benthic organisms under and slightly adjacent to the repaired pier.

<u>Pier-related pollutants</u>: As discussed above, over the life of the repaired pier, small amounts of pollutants that are harmful to fish and other aquatic organisms are likely to routinely enter lake waters from leaks, spills, and other discharges, including stormwater, from the house boats and vessels moored to the repaired pier. The exact identities and concentrations of the pollutants that would enter Lake Union are uncertain and likely to be highly variable depending on the timing and intensity of spill/discharge events. Some of those pollutants are likely to settle to the bottom, where they would accumulate across the affected area.

As stated under Pier-related Pollutants, in addition to direct uptake pollutants from the water through their gills, Chinook salmon, steelhead, and other fish can uptake pollutants through dietary exposure. Amphipods and copepods uptake contaminants such as PAHs from contaminated sediments (Landrum and Scavia 1983; Landrum et al. 1984; Neff 1982), and pass them to juvenile Chinook salmon and other small fish through the food web. Varanasi et al. (1993) found high levels of PAHs in the stomach contents of juvenile Chinook salmon in the contaminated Duwamish Waterway. They also reported reduced growth, suppressed immune competence, as well as increased mortality in juvenile Chinook salmon that was likely caused by the dietary exposure to PAHs. Meador et al. (2006) demonstrated that dietary exposure to PAHs caused "toxicant-induced starvation" with reduced growth and reduced lipid stores in juvenile Chinook salmon. The authors surmised that these impacts could severely impact the odds of survival in affected juvenile Chinook salmon.

Contaminated sediments that are mobilized by pile work and or tugboat operations, as well as pier-related pollutants that settle to the lake bed are almost certain include chemicals that are known to be harmful to Chinook salmon, steelhead, such PAHs, PCBs, and various metals that would be biologically available for years (Romberg 2005). While present, some of those contaminants are likely to be taken up by forage organisms, some of which would be consumed by and juvenile PS Chinook salmon and juvenile PS steelhead that forage within the affected area.

Additionally, the increased contaminant levels at the site may also sicken or kill some benthic organisms, diminishing the number, size, and species diversity of forage organisms that would be available to juvenile Chinook salmon and steelhead foraging within the affected area. The diminished availability of forage organisms would be exacerbated by the tugboat propeller scouring and by shade-related reduced productivity identified above. When juvenile fish encounter areas of diminished prey availability, feeding efficiency is reduced, which can cause fitness impacts that would reduce the long-term survivability of impacted individuals. It can also increase intraspecific competition that may force less competitive individuals into even less supportive foraging areas, potentially increasing interspecific mortality (Auer et al. 2020; Biro and Stamps 2010).

In summary, some of the juvenile Chinook salmon and juvenile steelhead that annually swim through the affected area would be exposed to some combination of project-related contaminated forage and or reduced forage availability that would reduce their long-term fitness. The annual numbers of either species that may be exposed to this stressor are unquantifiable with any degree of certainty, and are likely to be highly variable over time. Similarly, the amount of contaminated prey that any individual fish may consume, the contamination levels in consumed prey, the amount of reduced prey availability, and or the intensity of any effects that an exposed individual may experience are uncertain and likely to be highly variable over time.

For the same reasons expressed for pier-related altered lighting, the annual numbers of PS Chinook salmon and PS steelhead that may enter the project area would comprise small and variable subsets of their respective cohorts. Further, the probability of trophic connectivity to meaningful forage diminishment would be very low for any individual fish. Therefore, the individuals that would be meaningfully affected by this stressor would likely comprise very small subsets of the total numbers of individuals that would annually pass through the affected area. Based on the available information, the annual numbers of PS Chinook salmon and PS steelhead that would be meaningfully affected by action-related forage diminishment would be too small to cause detectable population-level effects.

2.5.2 Effects on Critical Habitat

This assessment considers the intensity of expected effects in terms of the change they would cause in affected Primary Biological Features (PBFs) from their baseline conditions, and the severity of each effect, considered in terms of the time required to recover from the effect. Ephemeral effects are those that are likely to last for hours or days, short-term effects would likely last for weeks, and long-term effects are likely to last for months, years or decades.

<u>Puget Sound Chinook Salmon Critical Habitat:</u> The proposed action, including full application of the planned conservation measures and BMPs, is likely to adversely affect designated critical habitat for PS Chinook salmon as described below.

- 1. Freshwater spawning sites: None in the action area.
- 2. Freshwater rearing sites: None in the action area.
- 3. Freshwater migration corridors free of obstruction and excessive predation:
 - a. Obstruction and excessive predation The proposed action would cause minor long-term adverse effects on this attribute. The altered light and in-water noise levels related to the presence of the repaired pier and the moored house boats and vessels would maintain conditions at the site that prevent normal migration behaviors, and increase the risk of predation for juvenile Chinook salmon that approach the pier.
 - b. Water quantity The proposed action would cause no effect on this attribute.
 - c. Water quality The proposed action would cause minor short- and long-term adverse effects on this attribute. Demolition and construction would cause short-term adverse effects on water quality that would persist no more than a low number of hours after work stops. Continued moorage of houseboats and recreational vessels would maintain

- persistent low-level inputs of pollutants at the pier, including PAHs. Detectable water quality impacts would be limited to the area within 300 feet around the pier. The action would cause no measurable changes in water temperature or salinity.
- d. Natural Cover The proposed action would cause minor long-term adverse effects on this attribute. Tugboat propeller scour is likely to remove small amounts of SAV, and despite the conversion of solid plank decking to fully-grated decking that would increase light penetration, the repaired pier would perpetuate conditions that act to limit the growth of SAV over its decades-long life.
- 4. Estuarine areas free of obstruction and excessive predation: None in the action area.
- 5. Nearshore marine areas free of obstruction and excessive predation: None in the action area.
- 6. Offshore marine areas: None in the action area.

2.6 Cumulative Effects

"Cumulative effects" are those effects of future state or private activities, not involving Federal activities, that are reasonably certain to occur within the action area of the Federal action subject to consultation (50 CFR 402.02 and 402.17(a)). Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the ESA.

Some continuing non-Federal activities are reasonably certain to contribute to climate effects within the action area. However, it is difficult if not impossible to distinguish between the action area's future environmental conditions caused by global climate change that are properly part of the environmental baseline *vs.* cumulative effects. Therefore, all relevant future climate-related environmental conditions in the action area are described in the discussion of the environmental baseline (Section 2.4).

The current conditions of ESA-listed species and designated critical habitat within the action area are described in the Range-wide Status of the Species and Critical Habitat and Environmental Baseline sections above. The non-federal activities in and upstream of the action area that have contributed to those conditions include past and on-going bankside development, vessel activities, and upland urbanization, as well as upstream forest management, agriculture, road construction, water development, subsistence and recreational fishing, and restoration activities. Those actions were, and continue to be, driven by a combination of economic conditions that characterized traditional natural resource-based industries, general resource demands associated with settlement of local and regional population centers, and the efforts of conservation groups dedicated to restoration and use of natural amenities, such as cultural inspiration and recreational experiences.

The NMFS is unaware of any specific future non-federal activities that are reasonably certain to affect the action area. However, the NMFS is reasonably certain that future non-federal actions such as the previously mentioned activities are all likely to continue and increase in the future as the human population continues to grow across the region. Continued habitat loss and

degradation of water quality from development and chronic input from point- and non-point pollutant sources will likely continue and increase into the future. Recreational use of the waters within the action area are also likely to increase as the human population grows.

The intensity of these influences depends on many social and economic factors, and therefore is difficult to predict. Further, the adoption of more environmentally acceptable practices and standards may gradually reduce some negative environmental impacts over time. Interest in restoration activities has increased as environmental awareness rises among the public. State, tribal, and local governments have developed plans and initiatives to benefit ESA-listed PS Chinook salmon and PS steelhead within many of the watersheds that flow into the action area. However, the implementation of plans, initiatives, and specific restoration projects are often subject to political, legislative, and fiscal challenges that increase the uncertainty of their success.

2.7 Integration and Synthesis

The Integration and Synthesis section is the final step in assessing the risk that the proposed action poses to species and critical habitat. In this section, we add the effects of the action (Section 2.5) to the environmental baseline (Section 2.4) and the cumulative effects (Section 2.6), taking into account the status of the species and critical habitat (Section 2.2), to formulate the agency's biological opinion as to whether the proposed action is likely to: (1) reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing its numbers, reproduction, or distribution; or (2) appreciably diminish the value of designated or proposed critical habitat as a whole for the conservation of the species.

As described in more detail above in Section 2.4, climate change is likely to increasingly affect the abundance and distribution of the ESA-listed species considered in the opinion. It is also likely to increasingly affect the PBF of designated critical habitats. The exact effects of climate change are both uncertain, and unlikely to be spatially homogeneous. However, climate change is reasonably likely to cause reduced instream flows in some systems, and may impact water quality through elevated in-stream water temperatures and reduced dissolved oxygen, as well as by causing more frequent and more intense flooding events.

Climate change may also impact coastal waters through elevated surface water temperature, increased and variable acidity, increasing storm frequency and magnitude, and rising sea levels. The adaptive ability of listed-species is uncertain, but is likely reduced due to reductions in population size, habitat quantity and diversity, and loss of behavioral and genetic variation.

The proposed action will cause direct and indirect effects on the ESA-listed species and critical habitats considered in the opinion well into the foreseeable future. However, the action's effects on water quality, substrate, and the biological environment are expected to be of such a small scale that no detectable effects on ESA-listed species or critical habitat through synergistic interactions with the impacts of climate change are expected.

2.7.1 ESA-listed Species

PS Chinook salmon and PS steelhead are both listed as threatened, based on declines from historic levels of abundance and productivity, loss of spatial structure and diversity, and an array of limiting factors as a baseline habitat condition. Both species will be affected over time by cumulative effects, some positive – as recovery plan implementation and regulatory revisions increase habitat protections and restoration, and some negative – as climate change and unregulated or difficult to regulate sources of environmental degradation persist or increase. Overall, to the degree that habitat trends are negative, the effects on viability parameters of each species are also likely to be negative. In this context we consider how the proposed action's impacts on individuals would affect the listed species at the population and ESU/DPS scales.

PS Chinook salmon

The long-term abundance trend of the PS Chinook salmon ESU is slightly negative. Reduced or eliminated accessibility to historically important habitat, combined with degraded conditions in available habitat due to land use activities appear to be the greatest threats to the recovery of PS Chinook salmon. Commercial and recreational fisheries also continue to impact this species. The most recent 5-year status review reported a general decline in natural-origin spawner abundance across all PS Chinook salmon MPGs over the most-recent fifteen years. It also reported that escapement levels remain well below the PSTRT planning ranges for recovery for all MPGs, and concluded that the PS Chinook salmon ESU remains at "moderate" risk of extinction (Ford 2022).

The PS Chinook salmon most likely to occur in the action area would be fall-run Chinook salmon from the Cedar River and the Sammamish River populations, both of which are part of the South Puget Sound MPG. Both populations are considered at high risk of extinction due to low abundance and productivity.

The project site is located on the northeast bank of Lake Union, about midway along the Lake Washington Ship Canal (Figure 1), which serves as a freshwater migration route to and from marine waters for adult and juvenile PS Chinook salmon from both affected populations. The environmental baseline within the action area has been degraded by the effects of nearby intense bankside development and maritime activities, and by nearby and upstream industry, urbanization, agriculture, forestry, water diversion, and road building and maintenance.

The timing of the proposed work avoids the normal migration seasons for PS Chinook salmon. Over the next several decades, low numbers of emigrating juveniles that annually pass through the project area would be exposed to low levels of diminished prey and other altered habitat conditions, that both individually and collectively, would cause some combination of altered behaviors, reduced fitness, and mortality in some of the exposed individuals. However, the annual numbers of individuals that would be detectably affected by action-related stressors would be extremely low.

Based on the best available information, the scale of the direct and indirect effects of the proposed action, when considered in combination with the degraded baseline, cumulative effects,

and the impacts of climate change, would be too small to cause detectable effects on any of the characteristics of a viable salmon population (abundance, productivity, distribution, or genetic diversity) for the affected PS Chinook salmon populations. Therefore, the proposed action would not appreciably reduce the likelihood of survival and recovery of this listed species.

PS Steelhead

The long-term abundance trend of the PS steelhead DPS is negative, especially for natural spawners. Abundance information is unavailable for about 1/3 of the DIPs. In most cases where no information is available, it is assumed that abundances are very low. Although most DIPs for which data are available experienced improved abundance over the last five years, 95% of those DIPs are at less than half of their lower abundance target for recovery. The extinction risk for the Puget Sound steelhead DPS is considered moderate. Reduced or eliminated accessibility to historically important habitat, combined with degraded conditions in available habitat due to land use activities appear to be the greatest threats to the recovery of PS steelhead. Fisheries activities also continue to impact this species (Ford 2022).

The PS steelhead most likely to occur in the action area would be winter-run fish from the Cedar River DIP, and North Lake Washington and Lake Sammamish DIP. The Cedar River PS steelhead DIP is small, of unknown stock with natural production, but with a strongly negative long-term abundance trend. The North Lake Washington and Lake Sammamish DIP is extremely small, of unknown stock origin, with less than 10 adults retuning annually since 1994.

The project site is located in Seattle, Washington, on the northeast shore of Lake Union, about mid-way along the Lake Washington Ship Canal (Figure 1), which serves as a freshwater migration route to and from marine waters for adult and juvenile PS steelhead from both affected DIPs. The environmental baseline within the action area has been degraded by the effects of nearby intense bankside development and maritime activities, and by nearby and upstream industry, urbanization, agriculture, forestry, water diversion, and road building and maintenance.

It is extremely unlikely that any PS steelhead would be directly exposed to the proposed work. However, over the next several decades, low numbers of emigrating juveniles that annually pass through the project area would be exposed to low levels of diminished prey and other altered habitat conditions, that both individually and collectively, would cause some combination of altered behaviors, reduced fitness, and mortality in some of the exposed individuals. However, the annual numbers of individuals that would be detectably affected by action-related stressors would be extremely low.

Based on the best available information, the scale of the direct and indirect effects of the proposed action, when considered in combination with the degraded baseline, cumulative effects, and the impacts of climate change, would be too small to cause detectable effects on any of the characteristics of a viable salmon population (abundance, productivity, distribution, or genetic diversity) for the affected PS steelhead DIPs. Therefore, the proposed action would not appreciably reduce the likelihood of survival and recovery of this listed species.

2.7.2 Critical Habitat

Critical habitat was designated for PS Chinook salmon to ensure that specific areas with PBFs that are essential to the conservation of that listed species are appropriately managed or protected. The critical habitat for PS Chinook salmon will be affected over time by cumulative effects, some positive – as restoration efforts and regulatory revisions increase habitat protections and restoration, and some negative – as climate change and unregulated or difficult to regulate sources of environmental degradation persist or increase. Overall, to the degree that trends are negative, the effects on the PBFs of critical habitat for PS Chinook salmon are also likely to be negative. In this context we consider how the proposed action's impacts on the attributes of the action area's PBFs would affect the designated critical habitat's ability to support the conservation of PS Chinook salmon as a whole.

Past and ongoing land and water use practices have degraded salmonid critical habitat throughout the Puget Sound basin. Hydropower and water management activities have reduced or eliminated access to significant portions of historic spawning habitat. Timber harvests, agriculture, industry, urbanization, shoreline development, and point and non-point stormwater and wastewater discharges have adversely altered floodplain and stream morphology in many watersheds, diminished the availability and quality of estuarine and nearshore marine habitats, and reduced water quality across the region.

Global climate change is expected to increase in-stream water temperatures and alter stream flows, possibly exacerbating impacts on baseline conditions in freshwater habitats across the region. Rising sea levels are expected to increase coastal erosion and alter the composition of nearshore habitats, which could further reduce the availability and quality of estuarine habitats. Increased ocean acidification may also reduce the quality of estuarine habitats.

In the future, non-federal land and water use practices and climate change are likely to increase. The intensity of those influences on salmonid critical habitat is uncertain, as is the degree to which those impacts may be tempered by adoption of more environmentally acceptable land use practices, by the implementation of non-federal plans that are intended to benefit salmonids, and by efforts to address the effects of climate change.

The PBF for PS Chinook salmon critical habitat in the action area is limited to freshwater migration corridors free of obstruction and excessive predation. The site attributes of that PBF that would be affected by the action are obstruction and excessive predation, water quality, and natural cover. As described in the environmental baseline section, the project site is located along a heavily impacted waterway, and all three of these site attributes currently function at reduced levels as compared to undisturbed freshwater migratory corridors. As described in the effects section, the proposed action would cause minor long-term adverse effects on the identified site attributes. On the positive side, the proposed work would remove creosote-treated piles, and increase light penetration under the repaired pier.

Based on the best available information, the scale of the proposed action's effects, when considered in combination with the degraded baseline, cumulative effects, and the impacts of climate change, would be too small to cause any detectable long-term negative changes in the

quality or functionality of the freshwater migration corridors PBF in the action area. Therefore, this critical habitat will maintain its current level of functionality, and retain its current ability for PBFs to become functionally established, to serve the intended conservation role for PS Chinook salmon.

2.8 Conclusion

After reviewing and analyzing the current status of the listed species and critical habitat, the environmental baseline within the action area, the effects of the proposed action, the effects of other activities caused by the proposed action, and cumulative effects, it is the NMFS' biological opinion that the proposed action is not likely to jeopardize the continued existence of PS Chinook salmon and PS steelhead, nor is it likely to destroy or adversely modify designated critical habitat for PS Chinook salmon.

2.9 Incidental Take Statement

Section 9 of the ESA and Federal regulations pursuant to section 4(d) of the ESA prohibit the take of endangered and threatened species, respectively, without a special exemption. "Take" is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. "Harm" is further defined by regulation to include significant habitat modification or degradation that actually kills or injures fish or wildlife by significantly impairing essential behavioral patterns, including breeding, spawning, rearing, migrating, feeding, or sheltering (50 CFR 222.102). "Harass" is further defined by interim guidance as to "create the likelihood of injury to wildlife by annoying it to such an extent as to significantly disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering." "Incidental take" is defined by regulation as takings that result from, but are not the purpose of, carrying out an otherwise lawful activity conducted by the Federal agency or applicant (50 CFR 402.02). Section 7(b)(4) and section 7(o)(2) provide that taking that is incidental to an otherwise lawful agency action is not considered to be prohibited taking under the ESA if that action is performed in compliance with the terms and conditions of this incidental take statement (ITS).

2.9.1 Incidental Take Statement

In the biological opinion, the NMFS determined that incidental take is reasonably certain to occur as follows:

Harm of PS Chinook salmon and PS steelhead from exposure to:

- Pier-related altered lighting,
- Pier-related pollutants,
- Pier-related noise,
- Pier-related propeller wash, and
- Diminished forage.

The NMFS cannot predict with meaningful accuracy the number of PS Chinook salmon and PS steelhead that are reasonably certain to be injured or killed annually by exposure to any of these stressors. The distribution and abundance of the fish that occur within an action area are affected by habitat quality, competition, predation, and the interaction of processes that influence genetic, population, and environmental characteristics. These biotic and environmental processes interact in ways that may be random or directional, and may operate across far broader temporal and spatial scales than are affected by the proposed action. Thus, the distribution and abundance of fish within the action area cannot be attributed entirely to habitat conditions, nor can the NMFS precisely predict the number of fish that are reasonably certain to be injured or killed if their habitat is modified or degraded by the proposed action. Additionally, the NMFS knows of no device or practicable technique that would yield reliable counts of individuals that may experience these impacts. In such circumstances, the NMFS uses the causal link established between the activity and the likely extent and duration of changes in habitat conditions to describe the extent of take as a numerical level of habitat disturbance. The most appropriate surrogates for take are action-related parameters that are directly related to the magnitude of the expected take.

For this action, the timing of in-water work is applicable because the proposed in-water work window avoids the expected presence of PS Chinook salmon in the project area. Therefore, working outside of the proposed work window would increase the potential that PS Chinook salmon would be exposed to work-related stressors that they otherwise would not be exposed to.

The size and design of the pier are the best available surrogates for the extent of take of juvenile PS Chinook salmon and juvenile PS steelhead from exposure to pier-related altered lighting, pollutants, noise, and propeller wash. Size and design are appropriate for altered lighting because, salmonid avoidance and the distance required to swim around the pier would both increase as the size and opacity of the pier increase. Size and design are also appropriate for pier-related pollutants, noise, and propeller wash because those stressors are all positively correlated with the number of houseboats and or recreational vessels that would moor at the pier, which is largely a function of the pier's size and design. As the number of moored houseboats and or recreational vessels increase, the potential for, and the intensity of exposure to, pier-related altered lighting, pollutants, noise, and propeller wash would increase for juvenile PS Chinook salmon and juvenile PS steelhead.

The number of repaired piles, the pile repair method (i.e. bonnet splicing at the mudline with hand excavation), the visible turbidity plume, and the size and design of the pier are the best available surrogates for the extent of take of juvenile PS Chinook salmon and juvenile PS steelhead from diminished forage. The number of piles and the method of repair are both appropriate because the intensity of surface sediment contamination would be positively correlated with the amount of contaminated subsurface sediments brought to the surface, which would increase with an increase in the number of repaired piles and or with more aggressive repair methods (i.e. pile extraction/replacement, or digging by water jetting and or mechanical excavation). As the amount of mobilized contaminated sediments increase, the amount of biologically available contaminants would increase, as would the intensity of prey contamination and prey mortality. The lateral extent of the visible turbidity plumes is appropriate because the size the affected would be positively correlated with the extent of the plume, and the numbers of

contaminated prey organisms and or exposed fish would be positively correlated with the size the affected area. The size and design of the pier is appropriate because the intensity of forage diminishment from pier-related altered lighting and pollutants would be positively corelated with numbers of moored houseboats and recreational vessels, which is limited by the current size of the pier. Additionally, failure to install grated decking, as proposed, would increase the intensity of forage diminishment from pier-related altered lighting.

In summary, the extent of PS Chinook salmon and PS steelhead take for this action is defined as:

- In-water work to be completed between October 1 and April 15;
- Repair of 14 timber piles by bonnet splicing, as described in the proposed action section of this biological opinion;
- Work-related visible turbidity plumes not to exceed 300 feet; and
- The post-construction size and design of the applicant's pier as described in the proposed action section of this biological opinion.

Exceedance of any of the exposure limits described above would constitute an exceedance of authorized take that would trigger the need to reinitiate consultation.

Although these take surrogates could be construed as partially coextensive with the proposed action, they nevertheless function as effective reinitiation triggers. If any of these take surrogates exceed the proposal, it could still meaningfully trigger reinitiation because the USACE has authority to conduct compliance inspections and to take actions to address non-compliance, including post-construction (33 CFR 326.4).

2.9.2 Effect of the Take

In the biological opinion, the NMFS determined that the amount or extent of anticipated take, coupled with other effects of the proposed action, is not likely to result in jeopardy to the species or destruction or adverse modification of critical habitat.

2.9.3 Reasonable and Prudent Measures

"Reasonable and prudent measures" are measures that are necessary or appropriate to minimize the impact of the amount or extent of incidental take (50 CFR 402.02).

The USACE shall require the applicant to:

1. Ensure the implementation of monitoring and reporting to confirm that the take exemption for the proposed action is not exceeded.

2.9.4 Terms and Conditions

In order to be exempt from the prohibitions of section 9 of the ESA, the Federal action agency must comply (or must ensure that any applicant complies) with the following terms and conditions. The USACE or any applicant has a continuing duty to monitor the impacts of

incidental take and must report the progress of the action and its impact on the species as specified in this ITS (50 CFR 402.14). If the entity to whom a term and condition is directed does not comply with the following terms and conditions, protective coverage for the proposed action would likely lapse.

- 1. The following terms and conditions implement reasonable and prudent measure 1:
 - a. The USACE shall require the applicant to develop and implement plans to collect and report details about the take of listed fish. That plan shall:
 - i. Require the applicant and or their contractor to maintain and submit records to verify that all take indicators are monitored and reported. Minimally, the records should include:
 - 1. Documentation of the timing of in-water work to ensure that the work is accomplished between October 1 and April 15;
 - 2. Documentation of the number and method of pile repair;
 - 3. Documentation of the lateral extent of turbidity plumes, and measures taken to maintain them within 300 feet; and
 - 4. Documentation of the size and design of the repaired pier to confirm that it complies with the characteristics described in the proposed action section of this biological opinion.
 - ii. Require the applicant to establish procedures for the submission of the construction records and other materials to the appropriate USACE office, and to submit an electronic post-construction report to the NMFS within six months of project completion. Send the report to: projectreports.wcr@noaa.gov. Be sure to include Attn: WCRO-2021-03150 in the subject line.

2.10 Conservation Recommendations

Section 7(a)(1) of the ESA directs Federal agencies to use their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of the threatened and endangered species. Specifically, "conservation recommendations" are suggestions regarding discretionary measures to minimize or avoid adverse effects of a proposed action on listed species or critical habitat or regarding the development of information (50 CFR 402.02).

To reduce the project's construction-related diminished forage:

1. The USACE should require the use of full-depth sediment curtains around pile splicing work to limit the spread of contaminated sediments.

2.11 Reinitiation of Consultation

This concludes formal consultation for the U.S. Army Corps of Engineers' authorization of the Dee Pile and Decking Repair Project in Lake Union, King County, Washington.

Under 50 CFR 402.16(a): "Reinitiation of consultation is required and shall be requested by the Federal agency or by the Service where discretionary Federal agency involvement or control over the action has been retained or is authorized by law and: (1) If the amount or extent of

taking specified in the incidental take statement is exceeded; (2) If new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not previously considered; (3) If the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat that was not considered in the biological opinion or written concurrence; or (4) If a new species is listed or critical habitat designated that may be affected by the identified action."

2.12 "Not Likely to Adversely Affect" Determinations

This assessment was prepared pursuant to section 7(a)(2) of the ESA, implementing regulations at 50 CFR 402 and agency guidance for preparation of letters of concurrence.

As described in Section 2 and below, the NMFS has concluded that the proposed action is not likely to adversely affect SR killer whales and their designated critical habitat. Detailed information about the biology, habitat, and conservation status and trends of SR killer whales can be found in the listing regulations and critical habitat designations published in the Federal Register, as well as in the recovery plans and other sources at: https://www.fisheries.noaa.gov/species-directory/threatened-endangered, and are incorporated

Under the ESA, "effects of the action" means the direct and indirect effects of an action on the listed species or critical habitat, together with the effects of other activities that are interrelated or interdependent with that action (50 CFR 402.02). The applicable standard to find that a proposed action is not likely to adversely affect listed species or critical habitat is that all of the effects of the action are expected to be discountable, insignificant, or completely beneficial. Beneficial effects are contemporaneous positive effects without any adverse effects to the species or critical habitat. Insignificant effects relate to the size of the impact and should never reach the scale where take occurs. Discountable effects are those that are extremely unlikely to occur.

2.12.1 Effects on Listed Species

here by reference.

The effects analysis in this section relies heavily on the descriptions of the proposed action and project site conditions discussed in Sections 1.3 and 2.4, and on the analyses of effects presented in Section 2.5. The proposed action will cause no direct effects on SR killer whales or their critical habitat because all construction and its impacts would take place in freshwater, and SR killer whales and their designated critical habitat are limited to marine waters.

However, the project may indirectly affect SR killer whales through the trophic web by affecting the quantity and quality of prey available to SR killer whales. We therefore analyze that potential here but conclude that the effects on SR killer whales will be insignificant for at least two reasons.

First, as described in Section 2.5, the action would annually affect an extremely low number of juvenile Chinook salmon. The project's detectable effects on fish would be limited to an area no more than 300 feet around the project site, where small subsets of each year's juvenile PS Chinook salmon cohorts from the Cedar River and North Lake Washington populations could be

briefly exposed to project-related impacts during the final portion their freshwater migration lifestage, and only very small subsets of the individuals that pass through the area are likely to be detectably affected by the exposure.

The exact Chinook salmon smolt to adult ratios are not known. However, even under natural conditions, individual juvenile Chinook salmon have a very low probability of surviving to adulthood (Bradford 1995). We note that human-caused habitat degradation and other factors such as hatcheries and harvest exacerbate natural causes of low survival such as natural variability in stream and ocean conditions, predator-prey interactions, and natural climate variability (Adams 1980, Quinones et al., 2014). However, based on the best available information, the annual numbers of project-affected juveniles would be too low to influence any VSP parameters for either population, or to cause any detectable reduction in adult Chinook salmon availability to SR killer whales in marine waters.

Second, as described in Sections 1.3, 2.2, and 2.5, the only PS Chinook populations that would be affected by the project would be the two Lake Washington populations that migrate through the Lake Washington ship canal, and both populations are small. Adult returns in 2021 for the Cedar River and North Lake Washington populations were 963 and 2,186 individuals, respectively (WDFW 2022b; 2022c). Consequently, the two populations, combined, make up a very small portion of the adult Chinook that are available to SR killer whales in marine waters. Therefore, based on the best available information, the proposed action is not likely to adversely affect SR killer whales.

2.12.2 Effects on Critical Habitat

This assessment considers the intensity of expected effects in terms of the change they would cause in affected physical or biological features (PBFs) from their baseline conditions, and the severity of each effect, considered in terms of the time required to recover from the effect. Ephemeral effects are those that are likely to last for hours or days, short-term effects would likely to last for weeks, and long-term effects are likely to last for months, years or decades.

<u>SR killer whale Critical Habitat:</u> Designated critical habitat for SR killer whales includes marine waters of the Puget Sound that are at least 20 feet deep. The expected effects on SR killer whale critical habitat from completion of the proposed action, including full application of the conservation measures and BMP, would be limited to the impacts on the PBFs as described below.

- 1. <u>Water quality to support growth and development</u>
 The proposed pier repair would cause no detectable effects on marine water quality.
- 2. Prey species of sufficient quantity, quality, and availability to support individual growth, reproduction, and development, as well as overall population growth

 The proposed actions would cause long-term undetectable effects on prey availability and quality. Action-related impacts would annually injure or kill extremely low numbers of individual juvenile Chinook salmon (primary prey), during the final portion their freshwater migration lifestage. However, the numbers of affected juvenile Chinook salmon would be too

small to cause detectable effects on the numbers of available adult Chinook salmon in marine waters. Therefore, it would cause no detectable reduction in prey availability and quality.

3. <u>Passage conditions to allow for migration, resting, and foraging</u>
The proposed pier repair would cause no detectable effects on passage conditions.

For the reasons expressed immediately above, the NMFS has concluded that the proposed action is not likely to adversely affect ESA-listed SR killer whales and their designated critical habitat.

3. MAGNUSON-STEVENS FISHERY CONSERVATION AND MANAGEMENT ACT ESSENTIAL FISH HABITAT RESPONSE

Section 305(b) of the MSA directs Federal agencies to consult with the NMFS on all actions or proposed actions that may adversely affect EFH. Under the MSA, this consultation is intended to promote the conservation of EFH as necessary to support sustainable fisheries and the managed species' contribution to a healthy ecosystem. For the purposes of the MSA, EFH means "those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity", and includes the physical, biological, and chemical properties that are used by fish (50 CFR 600.10). Adverse effect means any impact that reduces quality or quantity of EFH, and may include direct or indirect physical, chemical, or biological alteration of the waters or substrate and loss of (or injury to) benthic organisms, prey species and their habitat, and other ecosystem components, if such modifications reduce the quality or quantity of EFH. Adverse effects on EFH may result from actions occurring within EFH or outside of it and may include site-specific or EFH-wide impacts, including individual, cumulative, or synergistic consequences of actions (50 CFR 600.810). Section 305(b) of the MSA also requires the NMFS to recommend measures that can be taken by the action agency to conserve EFH. Such recommendations may include measures to avoid, minimize, mitigate, or otherwise offset the adverse effects of the action on EFH [CFR 600.905(b)].

This analysis is based, in part, on the EFH assessment provided by the USACE and the descriptions of EFH contained in the fishery management plan for Pacific Coast salmon developed by the Pacific Fishery Management Council (PFMC) and approved by the Secretary of Commerce (PFMC 2014).

3.1 Essential Fish Habitat Affected By the Project

The project site is located in Seattle, Washington, on the northeast shore of Lake Union, about mid-way along the Lake Washington Ship Canal (Figure 1). The waters and substrate of Lake Union and the ship canal are designated as freshwater EFH for various life-history stages of Pacific Coast Salmon, which within the Lake Washington watershed include Chinook and coho salmon. Due to trophic links between PS Chinook salmon and SR killer whales, the project's action area also overlaps with marine waters that have been designated, under the MSA, as EFH for Pacific Coast Salmon, Pacific Coast Groundfish, and Coastal Pelagic Species. However, the action would cause no detectable effects on any components of marine EFH. Therefore, the action's effects on EFH would be limited to impacts on freshwater EFH for Pacific Coast

Salmon, and it would not adversely affect marine EFH for Pacific Coast Salmon, or EFH for Pacific Coast groundfish and coastal pelagic species.

Freshwater EFH for Pacific salmon is identified and described in Appendix A to the Pacific Coast salmon fishery management plan, and consists of four major components: (1) spawning and incubation; (2) juvenile rearing; (3) juvenile migration corridors; and (4) adult migration corridors and holding habitat.

Those components of freshwater EFH for Pacific Coast Salmon depend on habitat conditions for spawning, rearing, and migration that include: (1) water quality (e.g., dissolved oxygen, nutrients, temperature, etc.); (2) water quantity, depth, and velocity; (3) riparian-stream-marine energy exchanges; (4) channel gradient and stability; (5) prey availability; (6) cover and habitat complexity (e.g., large woody debris, pools, aquatic and terrestrial vegetation, etc.); (7) space; (8) habitat connectivity from headwaters to the ocean (e.g., dispersal corridors); (9) groundwater-stream interactions; and (10) substrate composition.

As part of Pacific Coast Salmon EFH, five Habitat Areas of Particular Concern (HAPCs) have been defined: 1) complex channels and floodplain habitats; 2) thermal refugia; 3) spawning habitat; 4) estuaries; and 5) marine and estuarine submerged aquatic vegetation. The project area provides no known HAPC habitat features.

3.2 Adverse Effects on Essential Fish Habitat

The ESA portion of this document (Sections 1 and 2) describes the proposed action and its adverse effects on ESA-listed species and critical habitat, and is relevant to the effects on EFH for Pacific Coast Salmon. Based on the analysis of effects presented in Section 2.5 the proposed action will cause minor short- and long-term adverse and beneficial effects on EFH for Pacific Coast Salmon as summarized below.

- 1. Water quality: The proposed action would cause minor short- and long-term adverse effects on this attribute. Demolition and construction would cause short-term adverse effects on water quality that would persist no more than a low number of hours after work stops. Continued moorage of houseboats and recreational vessels would maintain persistent low-level inputs of pollutants at the pier, including PAHs. Detectable water quality impacts would be limited to the area within 300 feet around the pier. The action would cause no measurable changes in water temperature or salinity.
- 2. Water quantity, depth, and velocity: No changes expected.
- 3. Riparian-stream-marine energy exchanges: No changes expected.
- 4. Channel gradient and stability: No changes expected.
- 5. <u>Prey availability:</u> The proposed action would cause long-term minor adverse effects on this attribute. Despite the increase light penetration under the replaced grating material, the pier would still cast over-water shade that would limit SAV growth and reduce the density and diversity of the benthic and planktonic communities under it, such as amphipods, copepods,

and larvae of benthic species that are important prey resources for juvenile salmonids. Additionally, any contaminants that are mobilized during pile repair, combined with low-level input of contaminants from moored houseboats and recreational vessels would contaminate some of the available prey and or slightly diminish the number, size, and diversity of prey organisms available at the project site. Detectable effects would be limited to the area within about 300 feet around the pier.

- 6. <u>Cover and habitat complexity:</u> The proposed action would cause long-term minor adverse effects on this attribute. Tugboat propeller scour would temporarily reduce the amount of SAV, and pier-related shade would limit SAV growth, which would reduce maintain reduced cover availability for juvenile salmon under and adjacent to the pier.
- 7. Space: No changes expected.
- 8. Habitat connectivity from headwaters to the ocean: No changes expected.
- 9. Groundwater-stream interactions: No changes expected.
- 10. Substrate composition: No changes expected.

3.3 Essential Fish Habitat Conservation Recommendations

The NMFS determined that the following conservation recommendations are necessary to avoid, minimize, mitigate, or otherwise offset the impact of the proposed action on EFH.

1. Use of full-depth sediment curtains around pile splicing work to limit the spread of contaminated sediments.

3.4 Statutory Response Requirement

As required by section 305(b)(4)(B) of the MSA, the USACE must provide a detailed written response to the NMFS within 30 days after receiving an EFH Conservation Recommendation. Such a response must be provided at least 10 days prior to final approval of the action if the response is inconsistent with any of the NMFS' EFH Conservation Recommendations unless the NMFS and the Federal agency have agreed to use alternative time frames for the Federal agency response. The response must include a description of measures proposed by the agency for avoiding, minimizing, mitigating, or otherwise offsetting the impact of the activity on EFH. In the case of a response that is inconsistent with the Conservation Recommendations, the Federal agency must explain its reasons for not following the recommendations, including the scientific justification for any disagreements with the NMFS over the anticipated effects of the action and the measures needed to avoid, minimize, mitigate, or offset such effects (50 CFR 600.920(k)(1)).

In response to increased oversight of overall EFH program effectiveness by the Office of Management and Budget, the NMFS established a quarterly reporting requirement to determine how many conservation recommendations are provided as part of each EFH consultation and how many are adopted by the action agency. Therefore, we ask that in your statutory reply to the

EFH portion of this consultation, you clearly identify the number of conservation recommendations accepted.

3.5 Supplemental Consultation

The USACE must reinitiate EFH consultation with the NMFS if the proposed action is substantially revised in a way that may adversely affect EFH, or if new information becomes available that affects the basis for the NMFS' EFH Conservation Recommendations (50 CFR 600.920(1)).

4. DATA QUALITY ACT DOCUMENTATION AND PRE-DISSEMINATION REVIEW

The Data Quality Act (DQA) specifies three components contributing to the quality of a document. They are utility, integrity, and objectivity. This section of the opinion addresses these DQA components, documents compliance with the DQA, and certifies that this opinion has undergone pre-dissemination review.

4.1 Utility

Utility principally refers to ensuring that the information contained in this consultation is helpful, serviceable, and beneficial to the intended users. The intended user of this opinion is the USACE. Other interested users could include the applicant, WDFW, the governments and citizens of King County and the City of Seattle, and Native American tribes. Individual copies of this opinion were provided to the USACE. The document will be available at the NOAA Library Institutional Repository [https://repository.library.noaa.gov/welcome]. The format and naming adheres to conventional standards for style.

4.2 Integrity

This consultation was completed on a computer system managed by the NMFS in accordance with relevant information technology security policies and standards set out in Appendix III, 'Security of Automated Information Resources,' Office of Management and Budget Circular A-130; the Computer Security Act; and the Government Information Security Reform Act.

4.3 Objectivity

Information Product Category: Natural Resource Plan

Standards: This consultation and supporting documents are clear, concise, complete, and unbiased; and were developed using commonly accepted scientific research methods. They adhere to published standards including the NMFS ESA Consultation Handbook, ESA regulations, 50 CFR 402.01 et seq., and the MSA implementing regulations regarding EFH, 50 CFR 600.

Best Available Information: This consultation and supporting documents use the best available information, as referenced in the References section. The analyses in this opinion and EFH consultation contain more background on information sources and quality.

Referencing: All supporting materials, information, data and analyses are properly referenced, consistent with standard scientific referencing style.

Review Process: This consultation was drafted by the NMFS staff with training in ESA and MSA implementation, and reviewed in accordance with West Coast Region ESA quality control and assurance processes.

5. REFERENCES

- Adams, P.B. 1980. Life History Patterns in Marine Fishes and Their Consequences for Fisheries Management. Fishery Bulletin: VOL. 78, NO.1, 1980. 12 pp.
- Agne, M.C., P.A. Beedlow, D.C. Shaw, D.R. Woodruff, E.H. Lee, S.P. Cline, and R.L. Comeleo. 2018. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A. Forest Ecology and Management 409(1). https://doi.org/10.1016/j.foreco.2017.11.004
- Alizedeh, M.R., J.T. Abatzoglou, C.H. Luce, J.F. Adamowski, A. Farid, and M. Sadegh. 2021. Warming enabled upslope advance in western US forest fires. PNAS 118(22) e2009717118. https://doi.org/10.1073/pnas.2009717118
- Anderson, J.J., E. Gurarie, and R.W. Zabel. 2005. Mean free-path length theory of predator-prey interactions: Application to juvenile salmon migration. *Ecological Modelling*. 186:196-211.
- Anderson, S. C., J. W. Moore, M. M. McClure, N. K. Dulvy, and A. B. Cooper. 2015. Portfolio conservation of metapopulations under climate change. Ecological Applications, 25:559-572.
- Arkoosh, M. R., A. L. Van Gaest, S. A. Strickland, G. P. Hutchinson, A. B. Krupkin, M. B. R. Hicks, and J. P. Dietrich. 2018. Dietary exposure to a binary mixture of polybrominated diphenyl ethers alters innate immunity and disease susceptibility in juvenile Chinook salmon (*Oncorhynchus tshawytscha*). Ecotoxicology and Environmental Safety 163:96-103.
- Auer, S.K., R.D. Bassar, D. Turek, G.J. Anderson, S. McKelvey, J.D. Armstrong, K.H. Nislow, H.K. Downie, T.A.J. Morgan, D. McLennan, and N.B. Metcalfe. 2020. Metabolic rate interacts with resource availability to determine individual variation in microhabitat use in the wild. *The American Naturalist*. 196: 132-144.
- Barnett, H.K., T.P. Quinn, M. Bhuthimethee, and J.R. Winton. 2020. Increased prespawning mortality threatens an integrated natural- and hatchery-origin sockeye salmon population in the Lake Washington Basin. Fisheries Research 227. https://doi.org/10.1016/j.fishres.2020.105527.
- Bax, N. J., E. O. Salo, B. P. Snyder, C. A. Simenstad, and W. J. Kinney. 1978. Salmonid outmigration studies in Hood Canal. Final Report, Phase III. January July 1977, to U.S. Navy, Wash. Dep. Fish., and Wash. Sea Grant. Fish. Res. Inst., Univ. Wash., Seattle, WA. FRI-UW-7819. 128 pp.
- Becker, A., A.K. Whitfield, P.D. Cowley, J. Järnegren, and T.F. Næsje. 2013. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. Journal of Applied Ecology 2013, 50, 43–50. doi: 10.1111/1365-2664.12024.
- Beechie, T., E. Buhle, M. Ruckelshaus, A. Fullerton, and L. Holsinger. 2006. Hydrologic regime and the conservation of salmon life history diversity. Biological Conservation, 130(4), pp.560-572.
- Beitinger, T.L. and L. Freeman. 1983. Behavioral avoidance and selection responses of fishes to chemicals. In: Gunther F.A., Gunther J.D. (eds) Residue Reviews. Residue Reviews, vol 90. Springer, New York, NY.
- Biro, P. A., and J. A. Stamps. 2010. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology and Evolution 25:653–659.

- Black, B.A., P. van der Sleen, E. Di Lorenzo, D. Griffin, W.J. Sydeman, J.B. Dunham, R.R. Rykaczewski, M. García-Reyes, M. Safeeq, I. Arismendi, and S.J. Bograd. 2018. Rising synchrony controls western North American ecosystems. Global Change Biology, 24(6), pp. 2305-2314.
- Blackwell, S.B. and C.R. Greene Jr. 2006. Sounds from an oil production island in the Beaufort Sea in summer: characteristics and contribution of vessels. J. Acoust. Soc. Am. 119(1): 182-196.
- Bradford, M.J. 1995. Comparative review of Pacific salmon survival rates. Canadian Journal of Fisheries and Aquatic Sciences. 52: f 327-1338 (1995).
- Braun, D.C., J.W. Moore, J. Candy, and R.E. Bailey. 2016. Population diversity in salmon: linkages among response, genetic and life history diversity. Ecography, 39(3), pp.317-328.
- Brennan, J. S., K. F. Higgins, J. R. Cordell, and V. A. Stamatiou. 2004. Juvenile Salmon Composition, Timing, Distribution, and Diet in Marine Nearshore Waters of Central Puget Sound, 2001-2002. Prepared for the King County Department of Natural Resources and Parks, Seattle, WA. August 2004. 164 pp.
- Brette, F., B. Machado, C. Cros, J.P. Incardona, N.L. Scholz, and B.A. Block. 2014. Crude Oil Impairs Cardiac Excitation-Contraction Coupling in Fish. Science Vol 343. February 14, 2014. 10.1126/science.1242747. 5 pp.
- Burke, B.J., W.T. Peterson, B.R. Beckman, C. Morgan, E.A. Daly, M. Litz. 2013. Multivariate Models of Adult Pacific Salmon Returns. PLoS ONE, 8(1): e54134. https://doi.org/10.1371/journal.pone.0054134.
- Carr-Harris, C.N., J.W. Moore, A.S. Gottesfeld, J.A. Gordon, W.M. Shepert, J.D. Henry Jr, H.J. Russell, W.N. Helin, D.J. Doolan, and T.D. Beacham. 2018. Phenological diversity of salmon smolt migration timing within a large watershed. Transactions of the American Fisheries Society, 147(5), pp.775-790.
- Celedonia, M.T. and R.A. Tabor. 2015. Bright Lights, Big City Chinook Salmon Smolt Nightlife Lake Washington and the Ship Canal. Presentation to the WRIA 8 Technical Workshop. November 17, 2015. 16 pp.
- Celedonia, M.T., R.A. Tabor, S. Sanders, S. Damm, D.W. Lantz, T.M. Lee, Z. Li, J.-M. Pratt, B.E. Price, and L. Seyda. 2008a. Movement and Habitat Use of Chinook Salmon Smolts, Northern Pikeminnow, and Smallmouth Bass Near the SR 520 Bridge 2007 Acoustic Tracking Study. U.S. Fish and Wildlife Service, Lacey, WA. October 2008. 139 pp.
- Celedonia, M.T., R.A. Tabor, S. Sanders, D.W. Lantz, and J. Grettenberger. 2008b. Movement and Habitat Use of Chinook Salmon Smolts and Two Predatory Fishes in Lake Washington and the Lake Washington Ship Canal. 2004–2005 Acoustic Tracking Studies. U.S. Fish and Wildlife Service, Lacey, WA. December 2008. 129 pp.
- Chasco, B. E., B. J. Burke, L. G. Crozier, and R. W. Zabel. 2021. Differential impacts of freshwater and marine covariates on wild and hatchery Chinook salmon marine survival. PLoS ONE, 16: e0246659. https://doi.org/0246610.0241371/journal.pone.0246659.
- City of Seattle. 2008. Synthesis of Salmon Research and Monitoring Investigations Conducted in the Western Lake Washington Basin. Seattle Public Utilities and US Army Corps of Engineers, Seattle Division. December 31, 2008. 143 pp.
- City of Seattle. 2010. Shoreline Characterization Report. Seattle Public Utilities and US Army Corps of Engineers, Seattle Division. January 2010. 221 pp.
- Codarin, A., L.E. Wysocki, F. Ladich, and M. Picciulin. 2009. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Marine Pollution Bulletin 58 (2009) 1880–1887.

- Crozier, L. 2015. Impacts of Climate Change on Columbia River Salmon: A review of the scientific literature published in 2014. Pages D1-D50 in Endangered Species Act Section 7(a)(2) supplemental biological opinion: consultation on remand for operation of the Federal Columbia River Power System. U.S. National Marine Fisheries Service, Northwest Region.
- Crozier, L. 2016. Impacts of Climate Change on Columbia River Salmon: A review of the scientific literature published in 2015. Pages D1-D50 in Endangered Species Act Section 7(a)(2) supplemental biological opinion: consultation on remand for operation of the Federal Columbia River Power System. U.S. National Marine Fisheries Service, Northwest Region.
- Crozier, L. 2017. Impacts of Climate Change on Columbia River Salmon: A review of the scientific literature published in 2016. Pages D1-D50 in Endangered Species Act Section 7(a)(2) supplemental biological opinion: consultation on remand for operation of the Federal Columbia River Power System. U.S. National Marine Fisheries Service, Northwest Region.
- Crozier, L. G., and J. Siegel. 2018. Impacts of Climate Change on Columbia River Salmon: A review of the scientific literature published in 2017. Pages D1-D50 in Endangered Species Act Section 7(a)(2) supplemental biological opinion: consultation on remand for operation of the Federal Columbia River Power System. U.S. National Marine Fisheries Service, Northwest Region.
- Crozier, L.G. and R.W. Zabel. 2006. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon. *Journal of Animal Ecology*. 75:1100-1109.
- Crozier, L.G., Hendry, A.P., Lawson, P.W., Quinn, T.P., Mantua, N.J., Battin, J., Shaw, R.G. and Huey, R.B., 2008. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. *Evolutionary Applications* 1(2): 252-270.
- Crozier, L. G., M. D. Scheuerell, and E. W. Zabel. 2011. Using Time Series Analysis to Characterize Evolutionary and Plastic Responses to Environmental Change: A Case Study of a Shift Toward Earlier Migration Date in Sockeye Salmon. *The American Naturalist* 178 (6): 755-773.
- Crozier, L., R.W. Zabel, S. Achord, and E.E. Hockersmith. 2010. Interacting effects of density and temperature on body size in multiple populations of Chinook salmon. Journal of Animal Ecology. 79:342-349.
- Dorner, B., M.J. Catalano, and R.M. Peterman. 2018. Spatial and temporal patterns of covariation in productivity of Chinook salmon populations of the northeastern Pacific Ocean. *Canadian Journal of Fisheries and Aquatic Sciences*, 75(7): 1082-1095.
- Feist, B.E., E.R. Buhle, P. Arnold, J.W. Davis, and N.L. Scholz. 2011. Landscape ecotoxicology of coho salmon spawner mortality in urban streams. Plos One 6(8):e23424.
- FitzGerald, A.M., S.N. John, T.M. Apgar, N.J. Mantua, and B.T. Martin. 2020. Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress. Global Change Biology, 27(3).
- Ford, M. J., editor. 2022. Biological Viability Assessment Update for Pacific Salmon and Steelhead Listed Under the Endangered Species Act: Pacific Northwest. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-171. https://doi.org/10.25923/kq2n-ke70
- Forest Ecosystem Management Assessment Team (FEMAT). 1993. Forest ecosystem management: An ecological, economic, and social assessment. Report of the Forest Ecosystem Management Assessment Team. 1993-793-071. U.S. Gov. Printing Office.
- Freshwater, C., S. C. Anderson, K. R. Holt, A. M. Huang, and C. A. Holt. 2019. Weakened portfolio effects constrain management effectiveness for population aggregates. Ecological Applications, 29:14.

- Giattina, J.D., Garton, R.R., Stevens, D.G., 1982. Avoidance of copper and nickel by rainbow trout as monitored by a computer-based data acquisition-system. Trans. Am. Fish. Soc. 111, 491–504
- Gliwicz, Z.M., E. Babkiewicz, R. Kumar, S. Kunjiappan, and K. Leniowski, 2018. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnology and Oceanography, 63(S1), pp. S30-S43.Good, T.P., R.S. Waples, and P. Adams, (editors). 2005. Updated status of federally listed ESUs of west coast salmon and steelhead. U.S. Department of Commerce. NOAA Technical Memorandum NMFS-NWFSC-66. 598 p.
- Gobel, P., C. Dierkes, & W.C. Coldewey. 2007. Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91, 26–42.
- Gosselin, J. L., Buhle, E. R., Van Holmes, C., Beer, W. N., Iltis, S., & Anderson, J. J. 2021. Role of carryover effects in conservation of wild Pacific salmon migrating regulated rivers. Ecosphere, 12(7), e03618.
- Gourtay, C., D. Chabot, C. Audet, H. Le Delliou, P. Quazuguel, G. Claireaux, and J.L. Zambonino-Infante. 2018. Will global warming affect the functional need for essential fatty acids in juvenile sea bass (Dicentrarchus labrax)? A first overview of the consequences of lower availability of nutritional fatty acids on growth performance. Marine Biology, 165(9), pp.1-15.
- Graham, A.L., and S.J. Cooke. 2008. The effects of noise disturbance from various recreational boating activities common to inland waters on the cardiac physiology of a freshwater fish, the largemouth bass (*Micropterus salmoides*). Aquatic Conservation: Marine and Freshwater Ecosystems. 18:1315-1324.
- Halofsky, J.S., D.R. Conklin, D.C. Donato, J.E. Halofsky, and J.B. Kim. 2018. Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A. PLoS ONE, 13(12): e0209490. https://doi.org/10.1371/journal.pone.0209490.
- Halofsky, J.E., D.L. Peterson, and B. J. Harvey. 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16(4). https://doi.org/10.1186/s42408-019-0062-8.
- Hastings, M.C., and A. N. Popper. 2005. Effects of sound on fish. Final Report # CA05-0537 Project P476 Noise Thresholds for Endangered Fish. For: California Department of Transportation, Sacramento, CA. January 28, 2005, August 23, 2005 (Revised Appendix B). 85 pp.
- Hard, J.J., J.M. Myers, E.J. Connor, R.A. Hayman, R.G. Kope, G. Lucchetti, A.R. Marshall, G.R. Pess, and B.E. Thompson. 2015. Viability criteria for steelhead within the Puget Sound distinct population segment. U.S. Dept. of Commerce, NOAA Tech. Memo. NMFS-NWFSC-129. May 2015. 367 pp
- Healey, M., 2011. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Canadian Journal of Fisheries and Aquatic Sciences, 68(4), pp.718-737.
- Hecht, S.A., D.H. Baldwin, C.A. Mebane, T. Hawkes, S.J. Gross, and N.L. Scholz. 2007. An overview of sensory effects on juvenile salmonids exposed to dissolved copper: Applying a benchmark concentration approach to evaluate sublethal neurobehavioral toxicity. *In* U.S. Dept. Commer., NOAA Technical White Paper. March 2007. 45 pp.
- Heerhartz, S.M. and J.D. Toft. 2015. Movement patterns and feeding behavior of juvenile salmon (*Oncorhynchus* spp.) along armored and unarmored estuarine shorelines. Enviro. Biol. Fishes 98, 1501-1511.
- Holden, Z.A., A. Swanson, C.H. Luce, W.M. Jolly, M. Maneta, J.W. Oyler, D.A. Warren, R. Parsons and D. Affleck. 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS, 115(36). https://doi.org/10.1073/pnas.1802316115.

- Holsman, K.K., M.D. Scheuerell, E. Buhle, and R. Emmett. 2012. Interacting effects of translocation, artificial propagation, and environmental conditions on the marine survival of Chinook Salmon from the Columbia River, Washington, USA. Conservation Biology, 26(5), pp.912-922.
- Hood Canal Coordinating Council (HCCC). 2005. Hood Canal & Eastern Strait of Juan de Fuca summer chum salmon recovery plan. Version November 15, 2005. 339 pp.
- Hunter, M.A. 1992. Hydropower flow fluctuations and salmonids: A review of the biological effects, mechanical causes, and options for mitigation. Washington Department of Fisheries. Technical Report No. 119. Olympia, Washington.
- Ina, y., Y. Sakakura, Y. Tanaka, T. Yamada, K. Kumon, T, Eba, H. Hashimoto, J. Konishi, T. Takashi, and K. Gen. 2017. Development of phototaxis in the early life stages of Pacific bluefin tuna *Thunnus orientalis*. Fish Sci (2017) 83:537–542. DOI 10.1007/s12562-017-1087-z.
- Intergovernmental Panel on Climate Change (IPCC) Working Group I (WGI). 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou editor. Cambridge University Press (https://www.ipcc.ch/report/ar6/wg1/#FullReport).
- IPCC Working Group II (WGII). 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H.O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama (eds.) Cambridge University Press (https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_FinalDraft_FullReport.pdf).
- Incardona, J.P., T.K. Collier, and N.L. Scholz. 2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196:191-205.
- Incardona, J.P., M.G. Carls, H. Teraoka, C.A. Sloan, T.K. Collier, and N.L. Scholz. 2005. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environmental Health Perspectives 113:1755-1762.
- Isaak, D.J., C.H. Luce, D.L. Horan, G. Chandler, S. Wollrab, and D.E. Nagel. 2018. Global warming of salmon and trout rivers in the northwestern U.S.: Road to ruin or path through purgatory? Transactions of the American Fisheries Society. 147: 566-587. https://doi.org/10.1002/tafs.10059
- Jacox, M. G., Alexander, M. A., Mantua, N. J., Scott, J. D., Hervieux, G., Webb, R. S., & Werner, F.E. 2018. Forcing of multi-year extreme ocean temperatures that impacted California Current living marine resources in 2016. Bulletin of the American Meteorological, 99(1).
- Johnson, B.M., G.M. Kemp, and G.H. Thorgaard. 2018. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha. PLoS One, 13(1), p. e0190059.
- Karrow, N., H.J. Boermans, D.G. Dixon, A. Hontella, K.R. Soloman, J.J. White, and N.C. Bols. 1999. Characterizing the immunotoxicity of creosote to rainbow trout (Oncorhynchus mykiss): a microcosm study. Aquatic Toxicology. 45 (1999) 223–239.
- Kemp, P.S., M.H. Gessel, and J.G. Williams. 2005. Seaward migrating subyearling Chinook salmon avoid overhead cover. *Journal of Fish Biology*. 67:10.

- Keefer M.L., T.S. Clabough, M.A. Jepson, E.L. Johnson, C.A. Peery, C.C. Caudill. 2018. Thermal exposure of adult Chinook salmon and steelhead: Diverse behavioral strategies in a large and warming river system. PLoS ONE, 13(9): e0204274. https://doi.org/10.1371/journal.pone.0204274
- Kilduff, D. P., L.W. Botsford, and S.L. Teo. 2014. Spatial and temporal covariability in early ocean survival of Chinook salmon (Oncorhynchus tshawytscha) along the west coast of North America. ICES Journal of Marine Science, 71(7), pp.1671-1682.
- Killgore, K.J, L.E. Miranda, C.E. Murphy, D.M. Wolff, J.J. Hoover, T.M. Keevin, S.T. Maynord, and M.A. Cornish. 2011. Fish Entrainment Rates through Towboat Propellers in the Upper Mississippi and Illinois Rivers. Transactions of the American Fisheries Society, 140:3, 570-581, DOI: 10.1080/00028487.2011.581977.
- Koontz, E.D., E.A. Steel, and J.D. Olden. 2018. Stream thermal responses to wildfire in the Pacific Northwest. Freshwater Science, 37, 731 746.
- Kondolf, G.M. 1997. Hungry water: Effects of dams and gravel mining on river channels. Environmental Management 21(4):533-551.Krosby, M. D.M. Theobald, R. Norheim, and B.H. McRae. 2018. Identifying riparian climate corridors to inform climate adaptation planning. PLoS ONE 13(11): e0205156. https://doi.org/10.1371/journal.pone.0205156.
- Landrum, P.F., and D. Scavia. 1983. Influence of sediment on anthracene uptake, depuration, and biotransformation by the amphipod Hyalella azteca. Canada. J. Fish. Aquatic Sci. 40:298-305
- Landrum, P.F., B.J. Eadie, W.R. Faust, N.R. Morehead, and M.J. McCormick. 1984. Role of sediment in t e bioaccumulation of benzo(a)pyrene by the amphipod, Pontoporeia hoyi. Pages 799-812 in M. Cooke and A.J. Dennis (eds.). Polynuclear aromatic hydrocarbons: mechanisms, methods and metabolism. Battelle Press, Columbus, Ohio.
- Lee, R. and G. Dobbs. 1972. Uptake, Metabolism and Discharge of Polycyclic Aromatic Hydrocarbons by Marine Fish. Marine Biology. 17, 201-208.
- Lindley S.T., C.B. Grimes, M.S. Mohr, W. Peterson, J. Stein, J.T. Anderson, et al. 2009. What caused the Sacramento River fall Chinook stock collapse? NOAA Fisheries West Coast Region, Santa Cruz, CA. U.S. Department of Commerce NOAA-TM-NMFS-SWFSC-447.
- Lye, D. J. 2009. Rooftop runoff as a source of contamination: A review. Science of the Total Environment. Volume 407, Issue 21, 15 October 2009, Pages 5429-5434.
- Malek, K., J.C. Adam, C.O. Stockle, and R.T. Peters. 2018. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. Journal of Hydrology, 561:444-460.
- McCain, B., D.C. Malins, M.M. Krahn, D.W. Brown, W.D. Gronlund, L.K. Moore, and S-L. Chan. 1990. Uptake of Aromatic and Chlorinated Hydrocarbons by Juvenile Chinook Salmon (*Oncorhynchus tshawytscha*) in an Urban Estuary. Arch. Environ. Contam. Toxicol. 19, 10-16 (1990).
- McElhany, P., M.H. Ruckelshaus, M.J. Ford, T.C. Wainwright, and E.P. Bjorkstedt. 2000. Viable Salmonid Populations and the Recovery of Evolutionarily Significant Units. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-42. June 2000. 156 pp.
- McIntyre, J.K, D.H. Baldwin, D.A. Beauchamp, and N.L. Scholz. 2012. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecological Applications, 22(5), 2012, pp. 1460–1471.
- McKenna, M.F., D. Ross, S.M. Wiggins, and J.A. Hildebrand. 2012. Underwater radiated noise from modern commercial ships. J. Acoust. Soc. Am. 131(1): 92-103.

- Meadore, J.P., F.C. Sommers, G.M. Ylitalo, and C.A. Sloan. 2006. Altered growth and related physiological responses in juvenile Chinook salmon (*Oncorhynchus tshwaytscha*) from dietary exposure to polycyclic aromatic hydrocarbons (PAHs). Canadian Journal of fisheries and Aquatic Sciences. 63: 2364-2376.
- Moore, M. E., F. A. Goetz, D. M. Van Doornik, E. P. Tezak, T. P. Quinn, J. J. Reyes-Tomassini, and B. A. Berejikian. 2010. Early marine migration patterns of wild coastal cutthroat trout (Oncorhynchus clarki clarki), steelhead trout (Oncorhynchus mykiss), and their hybrids. PLoS ONE 5(9):e12881. Doi:10.1371/journal.pone.0012881. 10 pp.
- Moore, M.E., B.A. Berejikian, and E.P. Tezak. 2013. A Floating Bridge Disrupts Seaward Migration and Increases Mortality of Steelhead Smolts in Hood Canal, Washington State. PloS one. September 2013. Vol 8. Issue 9. E73427. 10 pp.
- Mueller, G. 1980. Effects of Recreational River Traffic on Nest Defense by Longear Sunfish. Transactions of the American Fisheries Society. 109:248-251.
- Munsch, S.H., J.R. Cordell, J.D. Toft, and E.E. Morgan. 2014. Effects of Seawalls and Piers on Fish Assemblages and Juvenile Salmon Feeding Behavior. *North American Journal of Fisheries Management*. 34:814-827.
- Munsch, S. H., C. M. Greene, N. J. Mantua, and W. H. Satterthwaite. 2022. One hundred-seventy years of stressors erode salmon fishery climate resilience in California's warming landscape. Global Change Biology, 28(7): 2183-2201. https://doi.org/10.1111/gcb.16029.
- Myers, J.M., J.J. Hard, E.J. Connor, R.A. Hayman, R.G. Kope, G. Lucchetti, A.R. Marshall, G.R. Pess, and B.E. Thompson. 2015. Identifying historical populations of steelhead within the Puget Sound distinct population segment U.S. Department of Commerce. NOAA Technical Memorandum NMFS-NWFSC-128. 149 pp.
- Myers, J.M., J. Jorgensen, M. Sorel, M. Bond, T. Nodine, and R. Zabel. 2018. Upper Willamette River Life Cycle Modeling and the Potential Effects of Climate Change. Draft Report to the U.S. Army Corps of Engineers. Northwest Fisheries Science Center. 1 September 2018.
- National Marine Fisheries Service (NMFS). 2006. Final Supplement to the Shared Strategy's Puget Sound Salmon Recovery Plan. Prepared by NMFS Northwest Region. November 17, 2006. 47 pp.
- NMFS. 2018. Endangered Species Act Section 7 Formal Consultation and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation for the Washington State Parks' Cornet Bay Moorage Improvement Project, Island County, Washington, COE Number: NWS-2015-988, Sixth Field HUC: 171100191100 Cornet Bay. (NMFS Consultation No. WCR-2017-7601). NOAA, NMFS, WCR, Portland, OR. June 14, 2018.
- National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). 2022. State of the Climate: Global Climate Report for Annual 2021, published online January 2022, retrieved on February 28, 2022 from https://www.ncdc.noaa.gov/sotc/global/202113.
- Neff, J.M. 1982. Accumulation and release of polycyclic aromatic hydrocarbons from water, food, and sediment by marine animals. Pages 282-320 in N.L. Richards and B.L. Jackson (eds.). Symposium: carcinogenic polynuclear aromatic hydrocarbons n the marine environment. U.S. Environ. Protection Agency Rep. 600/9-82-013.
- Neo, Y.Y., J. Seitz, R.A. Kastelein, H.V. Winter, C. Cate, H. Slabbekoorn. 2014. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biological Conservation 178 (2014) 65-73.

- Nightingale, B. and C.A Simenstad. 2001. Overwater structures: Marine issues white paper. Prepared by the University of Washington School of Marine Affairs and the School of Aquatic and Fishery Sciences for the Washington State Department of Transportation. May 2001. 177 pp.
- Northwest Fisheries Science Center (NWFSC). 2015. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. December 21, 2015. 356 pp.
- Ohlberger, J., E.J. Ward, D.E. Schindler, and B. Lewis. 2018. Demographic changes in Chinook salmon across the Northeast Pacific Ocean. Fish and Fisheries, 19(3), pp.533-546.
- Olmos M., M.R. Payne, M. Nevoux, E. Prévost, G. Chaput, H. Du Pontavice, J. Guitton, T. Sheehan, K. Mills, and E. Rivot. 2020. Spatial synchrony in the response of a long-range migratory species (Salmo salar) to climate change in the North Atlantic Ocean. Global Change Biology. 26(3):1319-1337. doi: 10.1111/gcb.14913. Epub 2020 Jan 12. PMID: 31701595.
- Ono, K., C.A. Simenstad, J.D. Toft, S.L. Southard, K.L. Sobocinski, and A. Borde. 2010. Assessing and Mitigating Dock Shading Impacts on the Behavior of Juvenile Pacific Salmon (Oncorhynchus spp.): Can Artificial Light Mitigate the Effects? Prepared for Washington State Dept. of Transportation. WA-RD 755.1 July 2010. 94 pp.
- Ou, M., T. J. Hamilton, J. Eom, E. M. Lyall, J. Gallup, A. Jiang, J. Lee, D. A. Close, S. S. Yun, and C. J. Brauner. 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change, 5:950-955.
- Pacific Fishery Management Council (PFMC). 2014. Appendix A to the Pacific Coast salmon fishery management plan, as modified by amendment 18 to the pacific coast salmon plan: identification and description of essential fish habitat, adverse impacts, and recommended conservation measures for salmon. PFMC, Portland, OR. September 2014. 196 p. + appendices.
- Picciulin, M., L. Sebastianutto, A. Codarin, A. Farina, and E.A. Ferrero. 2010. In situ behavioural responses to boat noise exposure of *Gobius cruentatus* (Gmelin, 1789; fam. Gobiidae) and *Chromis chromis* (Linnaeus, 1758; fam. Pomacentridae) living in a Marine Protected Area. Journal of Experimental Marine Biology and Ecology 386 (2010) 125–132.
- Quinones, R.M., Holyoak, M., Johnson, M.L., Moyle, P.B. 2014. Potential Factors Affecting Survival Differ by Run-Timing and Location: Linear Mixed-Effects Models of Pacific Salmonids (Oncorhynchus spp.) in the Klamath River, California. PLOS ONE www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e98392. 12 pp.
- Reine, K.J., D. Clarke, and C. Dickerson. 2014. Characterization of underwater sounds produced by hydraulic and mechanical dredging operations. J. Acoust. Soc. Am., Vol. 135, No. 6, June 2014. 15 pp.
- Richardson, W. J., C. R. Greene, C. I. Malme Jr., and D. H. Thomson. 1995. Marine Mammals and Noise. Academic Press, 525 B Street, Ste. 1900, San Diego, California 92101-4495.
- Rohaly, Z. 2021a. Biological Evaluation for Informal ESA Evaluation For: 2420 Cooperative-Version: May 2012. October 2021. 32 pp. Sent as an enclosure with USACE 2021.
- Rohaly, Z. 2021b. Washington State Joint Aquatic Resources Permit Application (JARPA) Project Name 2420 Cooperative. July 31, 2021. 14 pp. Sent as an enclosure with USACE 2021.
- Rohaly, Z. 2021c. Permit Drawings Revised. Applicant: 2420 Cooperative. October 27, 2021.9 pp.
- Romberg, P. 2005. Recontamination Sources at Three Sediment Caps in Seattle. Proceedings of the 2005 Puget Sound Georgia Basin Research Conference. 7 pp.
- Ruckelshaus, M., K. Currens, W. Graeber, R. Fuerstenberg, K. Rawson, N. Sands, and J. Scott. 2002. Planning ranges and preliminary guidelines for the delisting and recovery of the Puget Sound Chinook salmon evolutionarily significant unit. Puget Sound Technical Recovery Team. April 30, 2002. 19 pp.

- Schindler, D. E., J. B. Armstrong, and T. E. Reed. 2015. The portfolio concept in ecology and evolution. Frontiers in Ecology and the Environment, 13:257-263.
- Scholik, A.R., and H.Y. Yan. 2002. Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. Environmental Biology of Fishes. 63:203-209.
- Schreiner, J. U., E. O. Salo, B. P. Snyder, and C. A. Simenstad. 1977. Salmonid outmigration studies in Hood Canal. Final Report, Phase II, to U.S. Navy, Fish. Res. Inst., Univ. Wash., Seattle, WA. FRI-UW-7715. 64 pp.
- Sebastianutto, L., M. Picciulin, M. Costantini, and E.A. Ferrero. 2011. How boat noise affects an ecologically crucial behavior: the caser of territoriality in *Gobius cruentatus* (Gobiidae). Environmental Biology of Fishes. 92:207-215.
- Shared Strategy for Puget Sound (SSPS). 2007. Puget Sound Salmon Recovery Plan Volume 1. Shared Strategy for Puget Sound, 1411 4th Ave., Ste. 1015, Seattle, WA 98101. Adopted by NMFS January 19, 2007. 503 pp.
- Siegel, J., and L. Crozier. 2019. Impacts of Climate Change on Salmon of the Pacific Northwest. A review of the scientific literature published in 2018. Fish Ecology Division, NWFSC. December 2019.
- Siegel, J., and L. Crozier. 2020. Impacts of Climate Change on Salmon of the Pacific Northwest: A review of the scientific literature published in 2019. National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division. https://doi.org/10.25923/jke5-c307
- Simenstad, C.A., B. Nightingale, R.M. Thom, and D.K. Shreffler. 1999. Impacts of Ferry Terminals on Juvenile Salmon Migrating Along Puget Sound Shorelines Phase I: Synthesis of State of Knowledge. Prepared by Washington State Transportation Center, University of Washington for Washington State Department of Transportation Research Office, Report WA-RD 472.1, Olympia, Washington. June 1999. 100 pp.
- Simpson, S.D., A.N. Radford, S.L. Nedelec, M.C.O. Ferrari, D.P. Chivers, M.I. McCormick, and M.G. Meekan. 2016. Anthropogenic noise increases fish mortality by predation. Nature Communications 7:10544 DOI: 10.1038/ncomms10544 www.nature.com/naturecommunications February 5, 2016. 7 pp.
- Sommers, F., E. Mudrock, J. Labenia, and D. Baldwin. 2016. Effects of salinity on olfactory toxicity and behavioral responses of juvenile salmonids from copper. *Aquatic Toxicology*. 175:260-268.
- Southard, S.L., R.M. Thom, G.D. Williams, T.J. D. Toft, C.W. May, G.A. McMichael, J.A. Vucelick, J.T. Newell, and J.A. Southard. 2006. Impacts of Ferry Terminals on Juvenile Salmon Movement along Puget Sound Shorelines. Prepared for WSDOT by Battelle Memorial Institute, Pacific Northwest Division. PNWD-3647. June 2006. 84 pp.
- Spence, B.C., G.A. Lomnicky, R.M. Hughes, and R.P. Novitzki. 1996. An ecosystem approach to salmonid conservation. ManTech Environmental Research Services, Inc. Corvallis, Oregon. National Marine Fisheries Service, Portland, Oregon.
- Sridhar, V., M.M. Billah, J.W. Hildreth. 2018. Coupled Surface and Groundwater Hydrological Modeling in a Changing Climate. Groundwater,56(4). https://doi.org/10.1111/gwat.12610
- Stadler, J.H., and D.P. Woodbury. 2009. Assessing the effects to fishes from pile driving: Application of new hydroacoustic criteria. 8 pp. In Proceedings of Inter-Noise 2009: Innovations in Practical Noise Control, Ottawa, Ontario, Canada. August 23-26.
- Sturrock, A.M., S.M. Carlson, J.D. Wikert, T. Heyne, S. Nusslé, J.E. Merz, H.J. Sturrock and R.C. Johnson. 2020. Unnatural selection of salmon life histories in a modified riverscape. Global Change Biology, 26(3), 1235-1247.

- Tabor, R. A. and R.M. Piaskowski. 2002. Nearshore Habitat Use by Juvenile Chinook Salmon in Lentic Systems of the Lake Washington Basin, Annual Report 2001. U.S. Fish and Wildlife Service, Western Washington Fish and Wildlife Office, Lacey, Washington. February 2020. 56 pp.
- Tabor, R.A., H.A. Gearns, C.M. McCoy III, and S. Camacho. 2006. Nearshore Habitat Use by Juvenile Chinook Salmon in Lentic Systems, 2003 and 2004 Report. U.S. Fish and Wildlife Service, Western Washington Fish and Wildlife Office, Fisheries Division, 510 Desmond Drive SE, Suite 102, Lacey, Washington 98503. March 2006. 108 pp.
- Tabor, R.A., S.T. Sanders, M.T. Celedonia, D.W. Lantz, S. Damm, T.M. Lee, Z. Li, and B.E. Price.
 2010. Spring/Summer Habitat Use and Seasonal Movement Patterns of Predatory Fishes in the Lake Washington Ship Canal. Final Report, 2006-2009 to Seattle Public Utilities. U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, Fisheries Division, 510 Desmond Drive SE, Suite 102, Lacey, Washington 98503. September 2010. 88 pp.
- Tabor, R.A., A.T.C. Bell, D.W. Lantz, C.N. Gregersen, H.B. Berge, and D.K. Hawkins. 2017. Phototaxic Behavior of Subyearling Salmonids in the Nearshore Area of Two Urban Lakes in Western Washington State. Transactions of the American Fisheries Society 146:753–761, 2017.
- Thorne, K., G. MacDonald, G. Guntenspergen, R. Ambrose, K. Buffington, B. Dugger, C. Freeman, C. Janousek, L. Brown, J. Rosencranz, J. Holmquist, J. Smol, K. Hargan, and J. Takekawa. 2018. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Science Advances, 4(2). DOI: 10.1126/sciadv.aao3270
- Tian, Z., H. Zhao, K.T. Peter, M. Gonzalez, J. Wetzel, C. Wu, X. Hu, J. Prat, E. Mudrock, R. Hettinger, A.E. Cortina, R.G. Biswas, F.V.C. Kock, R.Soong, A. Jenne, B. Du, F. Hou, H. He, R. Lundeen, A. Gilbreath, R. Sutton, N.L. Scholz, J.W. Davis, M.C. Dodd, A. Simpson, J.K. McIntyre, and E.P. Kolodziej. 2021. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science, 371: 185–189.
- Tierney, K.B., D.H. Baldwin, T.J. Hara, P.S. Ross, N.L. Scholz, and C.J. Kennedy. 2010. Olfactory toxicity in fishes. *Aquatic Toxicology*. 96:2-26.Toft, J.D., J.R. Cordell, C.A. Simenstad, and L.A. Stamatiou. 2007. Fish Distribution, Abundance, and Behavior along City Shoreline Types in Puget Sound. *North American Journal of Fisheries Management*. 27:465-480.
- US Army Corps of Engineer (USACE). 2016. Seattle Harbor Navigation Improvement Project Final Integrated Feasibility Report and Environmental Assessment. Biological Assessment. Prepared by the Seattle District U.S. Army Corps of Engineers. Seattle, WA. November 2017. 142 pp.
- USACE. 2021. ESA Consultation Request NWS-2021-784 Dee, Simon (King County). Letter for request informal consultation under the Endangered Species Act. December 21, 2021.
- USACE. 2022a. Request for Formal Consultation NWS-2021-784; 2420 Cooperative. Letter to request formal consultation under the Endangered Species Act and the Magnuson-Stevens Fishery Conservation and Management Act. July 14, 2022.
- USACE. 2022b. NWS-2021-874 WCRO-2021-03150 Dee Simon Piles and Decking. Electronic mail from R. Cochoit to pause formal consultation. November 23, 2022.
- USACE 2023. RE: NWS-2021-874 WCRO-2021-03150 Dee Simon Piles and Decking. Electronic mail from R. Cochoit to resume formal consultation. March 13, 2023.
- U.S. Department of Commerce (USDC). 2014. Endangered and threatened wildlife; Final rule to revise the Code of Federal Regulations for species under the jurisdiction of the National Marine Fisheries Service. U.S Department of Commerce. Federal Register 79(71):20802-20817.

- Varanasi, U., E. Casillas, M.R. Arkoosh, T. Hom, D.A. Misitano, D.W. Brown, S.L. Chan, T.K. Collier, B.B. McCain, and J.E. Stein. 1993. Contaminant Exposure and Associated Biological Effects in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Urban and Nonurban Estuaries of Puget Sound. NOAA Technical Memorandum NMFS-NWFSC-8. NMFS NFSC Seattle, WA. April 1993. 69 pp.
- Veilleux, H.D., Donelson, J.M. and Munday, P.L., 2018. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conservation Physiology, 6(1), cox077. https://doi.org/10.1093/conphys/cox077.
- Virginia Institute of Marine Science (VIMS). 2011. Propeller turbulence may affect marine food webs, study finds. ScienceDaily. April 20, 2011. Accessed May 15, 2018 at: https://www.sciencedaily.com/releases/2011/04/110419111429.htm
- Wainwright, T. C., and L. A. Weitkamp. 2013. Effects of climate change on Oregon Coast coho salmon: habitat and life-cycle interactions. *Northwest Science* 87(3): 219-242.
- Ward, E.J., J.H. Anderson, T.J. Beechie, G.R. Pess, M.J. Ford. 2015. Increasing hydrologic variability threatens depleted anadromous fish populations. Global Change Biology. 21(7):2500–9. Epub 2015/02/04. pmid:25644185.
- Washington State Department of Ecology (WDOE). 2008. Suggested Practices to Reduce Zinc Concentrations in Industrial Stormwater Discharges Water Quality Program Pub. No. 08-10-025. June 2007. 34 pp.
- WDOE. 2014. Roofing Materials Assessment Investigation of Toxic Chemicals in Roof Runoff. Publication No. 14-03-003. February 2014. 132 pp.
- WDOE. 2023. Washington State Water Quality Atlas. Accessed on June 2, 2023 at: https://fortress.wa.gov/ecy/waterqualityatlas/StartPage.aspx.
- Washington State Department of Fish and Wildlife (WDFW). 2023a. Hydraulic Project Approval Re: Permit Number 2021-4-885+02. Application ID: 25245. Project Name: 2420 Cooperative. March 30, 2023. 7 pp.
- WDFW. 2023b. SalmonScape. Accessed on May 25, 2023 at: http://apps.wdfw.wa.gov/salmonscape/map.html.
- WDFW. 2023c. WDFW Conservation Website Species Salmon in Washington Chinook. Accessed on May 25, 2023 at: https://fortress.wa.gov/dfw/score/score/species/chinook.jsp?species=Chinook
- WDFW. 2023d. WDFW Conservation Website Species Salmon in Washington Steelhead. Accessed on May 25, 2023 at: https://fortress.wa.gov/dfw/score/score/species/steelhead.jsp?species=Steelhead
- Willette, T.M. 2001. Foraging behaviour of juvenile pink salmon (Oncorhynchus gorbuscha) and size-dependent predation risk. Fisheries Oceanography. 10:110-131.
- Williams, C. R., A. H. Dittman, P. McElhany, D. S. Busch, M. T. Maher, T. K. Bammler, J. W. MacDonald, and E. P. Gallagher. 2019. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase Coho salmon (Oncorhynchus kisutch). Global Change Biology, 25:963-977. DOI: 10.1111/gcb.14532.
- Xie, Y.B., C.G.J. Michielsens, A.P. Gray, F.J. Martens, and J.L. Boffey. 2008. Observations of avoidance reactions of migrating salmon to a mobile survey vessel in a riverine environment. Canadian Journal of Fisheries and Aquatic Sciences. 65:2178-2190.
- Yan, H., N. Sun, A. Fullerton and M. Baerwalde. 2021. Greater vulnerability of snowmelt-fed river thermal regimes to a warming climate. Environmental Research Letters, 16(5). 14pp. https://iopscience.iop.org/article/10.1088/1748-9326/abf393/meta